Russian Journal of Physical Chemistry B

, Volume 12, Issue 1, pp 36–45 | Cite as

Role of Structural Stresses in the Thermodestruction of Supercoiled Cellulose Macromolecules after Nitration

  • S. V. StovbunEmail author
  • S. M. Lomakin
  • A. I. Shchegolikhin
  • A. A. Skoblin
  • V. P. Mel’nikov
Kinetics and Mechanism of Chemical Reactions. Catalysis


Thermogravimetry is used to study the thermodestruction of nitrocellulose (NC) with various nitrogen contents at various heating rates. At high degrees of nitration and high heating rates of the sample, the reaction occurs in an explosion mode with a threshold of its weight loss depending on the temperature. To explain this behavior, it is assumed that the nitration of cellulose gives rise to structural stresses, which weaken the covalent bonds in it by ∼37 kJ/mol (at a nitrogen content of ∼13%). This process apparently involves two different mechanisms of weight loss during heating: (a) conventional thermal destruction of NC macromolecules through the rupture of covalent bonds (with k0 = 1013 s−1, E = 150.2 kJ/mol, and n = 1) at heating rates of up to 10 K/min and nitrogen content in NC of up to 9%; (b) Zhurkov’s thermofluctuational mechanism of the destruction of strained macromolecules, characterized by a sharp (threshold) dependence of the weight loss on the heating rate, which is operative at heating rates above ∼4 K/min and high (>13%) nitrogen contents and at 20 K/min and a low (∼9%) nitrogen content. Under conditions of rapid heating, ∼10–20 K/min, the work done by stressed states to overcome the potential barrier to the rupture of covalent bonds causes an increase in the decomposition rate by a factor of 2000. The observed threshold pattern of weight loss during the thermodestruction of NC explains the long-known critical dependence of the properties of NC used to manufacture propellants on small changes in the nitrogen content.


nitrocellulose nitration propellant combustion supercoiling structural stresses thermofluctuational destruction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. F. Pokhil, in Theory of Powders and Explosives Combustion, Ed. by O. I. Leipunskii (Nauka, Moscow, 1982), p. 117 [in Russian].Google Scholar
  2. 2.
    P. F. Pokhil, L. D. Romadanova, and M. M. Belov, in Physics of Explosion (Akad. Nauk SSSR, Moscow, 1955), No. 3, p. 93 [in Russian].Google Scholar
  3. 3.
    S. V. Stovbun, S. N. Nikol’skii, V. P. Mel’nikov, M. G. Mikhaleva, Ya. A. Litvin, A. N. Shchegolikhin, D. V. Zlenko, V. A. Tverdislov, D. S. Gerasimov, and A. D. Rogozin, Russ. J. Phys. Chem. B 10, 245 (2016).CrossRefGoogle Scholar
  4. 4.
    S. V. Stovbun, A. A. Skoblin, A. M. Zanin, et al., Byull. Eksp. Biol. Med. 154 (7), 41 (2012).Google Scholar
  5. 5.
    S. V. Stovbun and A. A. Skoblin, Mosc. Univ. Phys. Bull. 67, 317 (2012).CrossRefGoogle Scholar
  6. 6.
    S. V. Stovbun, A. A. Skoblin, and V. A. Tvepdislov, Biophysics 59, 876 (2014).CrossRefGoogle Scholar
  7. 7.
    I. I. Artobolevskii, Mechanism and Machine Theory (Nauka, Moscow, 1988) [in Russian].Google Scholar
  8. 8.
    S. V. Stovbun, A. A. Skoblin, Ya. A. Litvin, M. G. Mikhaleva, and V. A. Tverdislov, Mosc. Univ. Phys. Bull. 70, 45 (2015).CrossRefGoogle Scholar
  9. 9.
    S. N. Zhurkov and B. N. Nazrullaev, Zh. Tekh. Fiz. 23, 1677 (1953).Google Scholar
  10. 10.
    J. Opfermann, Therm. Anal. Calorim. 60, 641 (2000).CrossRefGoogle Scholar
  11. 11.
    J. Opfermann, Rechentech./Datenverarbeit. 22, 26 (1985).Google Scholar
  12. 12.
    M. R. Sovizi, S. S. Hajimirsadeghi, and B. Naderizadeh, J. Hazard. Mater. 168, 1134 (2009).CrossRefGoogle Scholar
  13. 13.
    S. M. Lomakin, S. Z. Rogovina, A. V. Grachev, E. V. Prut, and Ch. V. Alexanyan, Thermochim. Acta 521, 66 (2011).CrossRefGoogle Scholar
  14. 14.
    N. Binke, L. Rong, C. Xianqi, et al., J. Therm. Anal. Calorim. 58, 249 (1999).CrossRefGoogle Scholar
  15. 15.
    Ya. I. Frenkel’, Kinetic Theory of Liquids (Nauka, Moscow, 1975) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. V. Stovbun
    • 1
    Email author
  • S. M. Lomakin
    • 2
  • A. I. Shchegolikhin
    • 2
  • A. A. Skoblin
    • 1
  • V. P. Mel’nikov
    • 1
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Emanuel Institute of Biochemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations