Russian Journal of Physical Chemistry B

, Volume 11, Issue 5, pp 786–797 | Cite as

Features of the kinetics of chemical reactions in a nanostructured liquid

Kinetics and Mechanism of Chemical Reactions. Catalysis
  • 16 Downloads

Abstract

A review of the literature on the supramolecular structure of a liquid medium and the kinetics of formation of the structure has been presented. The models that relate the kinetics of chemical reactions to the liquid medium structure have been discussed. It has been shown that the results of the mathematical modeling of the kinetics of reactions in a nanostructured liquid medium taking into account the difference in the reactivity of molecules of the reagents and associates are consistent with the experimental data; in particular, they can be used to explain the cause of the observed kinetic anomalies.

Keywords

chemical reaction kinetics liquid medium supramolecular structure reagent association 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Berlin, N. N. Tvorogov, and G. V. Korolev, Izv. Akad. Nauk, Ser. Khim., No. 1, 193 (1966).Google Scholar
  2. 2.
    A. A. Berlin, N. N. Tvorogov, and G. V. Korolev, Dokl. Akad. Nauk SSSR 170, 1073 (1966).Google Scholar
  3. 3.
    G. V. Korolev, M. M. Mogilevich, and I. V. Golikov, Polyacrylates. Microheterogeneous Structures, Physical Networks, and Deformation–Strength Properties (Khimiya, Moscow, 1995) [in Russian].Google Scholar
  4. 4.
    R. P. Tiger, D. N. Tarasov, and S. G. Entelis, Khim. Fiz. 15 (11), 11 (1996).Google Scholar
  5. 5.
    S. P. Bondarenko, S. V. Zaporozhskaya, R. P. Tiger, et al., Khim. Fiz. 5, 1246 (1986).Google Scholar
  6. 6.
    A. N. Zelenyuk, P. A. Berlin, R. P. Tiger, et al., Kinet. Katal. 35, 852 (1994).Google Scholar
  7. 7.
    S. P. Bondarenko, R. P. Tiger, and S. G. Entelis, Zh. Fiz. Khim. 55, 1716 (1981).Google Scholar
  8. 8.
    S. P. Bondarenko, Yu. N. Chirkov, R. P. Tiger, et al., Kinet. Katal. 30, 599 (1989).Google Scholar
  9. 9.
    Yu. Ya. Maksimov and E. N. Kogut, Zh. Fiz. Khim. 52, 1400 (1978).Google Scholar
  10. 10.
    I. F. Falyachov, G. P. Sharnin, N. M. Safin, et al., in Proceedings of the 21st International Pyrotechnic Seminar (Inst. Prikl. Khim. Fiz. RAN, Chernogolovka, 1995), p. 187.Google Scholar
  11. 11.
    V. I. Levitas, B. F. Henson, L. B. Smilowitz, et al., J. Appl. Phys. 102, 113502 (2007).CrossRefGoogle Scholar
  12. 12.
    E. V. Gert, M. V. Shishonok, O. V. Zubets, et al., Vysokomol. Soedin., Ser. A 37, 1130 (1995).Google Scholar
  13. 13.
    F. I. Dubovitskii, G. B. Manelis, and L. P. Smirnov, Zh. Fiz. Khim. 35, 521 (1961).Google Scholar
  14. 14.
    E. V. Stovbun, E. R. Badamshina, V. A. Grigor’eva, V. P. Lodygina, A. I. Kuzaev, and S. M. Baturin, Polymer Sci., Ser. A 40, 793 (1998).Google Scholar
  15. 15.
    M. A. Zaverkina, V. P. Lodygina, E. V. Stovbun, and E. R. Badamshina, Polymer Sci., Ser. A 49, 1008 (2007).CrossRefGoogle Scholar
  16. 16.
    M. A. Zaverkina, V. P. Lodygina, V. V. Komratova, E. V. Stovbun, and E. R. Badamshina, Polymer Sci., Ser. A 48, 382 (2006).CrossRefGoogle Scholar
  17. 17.
    M. A. Zaverkina, Cand. Sci. (Chem.) Dissertation (Inst. Appl. Chem. Phys. of RAS, Chernogolovka, 2007).Google Scholar
  18. 18.
    Molecular Interactions, Ed. by H. Ratajczak and W. Orwil-Thomas (Wiley, New York, 1982; Mir, Moscow, 1984).Google Scholar
  19. 19.
    Intermolecular Interactions: From Diatomics to Biopolymers, Ed. by B. Pullman (Wiley, New York, 1978; Mir, Moscow, 1981).Google Scholar
  20. 20.
    Ya. I. Frenkel’, Kinetic Theory of Liquids (Nauka, Moscow, 1975) [in Russian].Google Scholar
  21. 21.
    J.-M. Lehn, Supramolecular Chemistry: Concepts and Perspectives (VCH, Weinheim, 1995; Nauka, Moscow, 1998).Google Scholar
  22. 22.
    S. M. Mezhikovskii and V. I. Irzhak, Chemical Physics of Curing of Oligomers (Nauka, Moscow, 2008) [in Russian].Google Scholar
  23. 23.
    G. B. Manelis, G. M. Nazin, Yu. I. Rubtsov, et al., Thermal Decomposition and Combustion of Explosives and Powders (Nauka, Moscow, 1996) [in Russian].Google Scholar
  24. 24.
    V. I. Irzhak and S. M. Mezhikovskii, Russ. Chem. Rev. 78, 165 (2009).CrossRefGoogle Scholar
  25. 25.
    Th. Kyu, H.-W. Chiu, and Ja.-H. Lee, Heterophase Network Polymers. Synthesis, Characterization and Properties, Ed. by B. A. Rozenberg and G. M. Sigalov (Taylor & Francis, London, New York, 2002).Google Scholar
  26. 26.
    V. I. Irzhak, Topological Structure of Polymers (KNITU, Kazan, 2013) [in Russian].Google Scholar
  27. 27.
    L. P. Smirnov, Russ. Chem. Rev. 73, 1121 (2004).CrossRefGoogle Scholar
  28. 28.
    V. N. Gulyavtsev, Yu. M. Sivergin, Yu. V. Zelenev, et al., Dokl. Akad. Nauk SSSR 208, 1383 (1973).Google Scholar
  29. 29.
    A. V. Kotova, V. M. Lantsov, L. A. Abdrakhmanova, et al., Vysokomol. Soedin. 29, 1761 (1987).Google Scholar
  30. 30.
    A. G. Solov’ev and L. I. Murza, Vysokomol. Soedin., Ser. B 37, 1219 (1995).Google Scholar
  31. 31.
    E. R. Gasilova, V. A. Shevelev, S. V. Lukasov, et al., Vysokomol. Soedin., Ser. A 32, 2366 (1990).Google Scholar
  32. 32.
    B. R. Smirnov, I. V. Golikov, G. V. Korolev, et al., Vysokomol. Soedin., Ser. A 19, 735 (1977).Google Scholar
  33. 33.
    B. R. Smirnov, T. V. Sosnina, V. B. Stryukov, et al., Dokl. Akad. Nauk SSSR 214, 615 (1974).Google Scholar
  34. 34.
    T. P. Kulagina and L. P. Smirnov, Dokl. Phys. Chem. 427, 136 (2009).CrossRefGoogle Scholar
  35. 35.
    T. P. Kulagina and L. P. Smirnov, Russ. J. Phys. Chem. B 3, 910 (2009).CrossRefGoogle Scholar
  36. 36.
    T. P. Kulagina and L. P. Smirnov, Kinet. Catal. 52, 170 (2011).CrossRefGoogle Scholar
  37. 37.
    L. P. Smirnov, T. P. Kulagina, and G. E. Karnaukh, Dokl. Phys. Chem. 449, 34 (2013).CrossRefGoogle Scholar
  38. 38.
    L. P. Smirnov, T. P. Kulagina, and G. E. Karnaukh, Russ. J. Phys. Chem. B 7, 548 (2013).CrossRefGoogle Scholar
  39. 39.
    A. W. Castleman and S. Wei, Ann. Rev. Phys. Chem. 45, 685 (1994).CrossRefGoogle Scholar
  40. 40.
    M. F. Shears and G. Williams, J. Chem. Soc., Faraday Trans. 69, 608 (1973).CrossRefGoogle Scholar
  41. 41.
    B. M. Smirnov, Phys. Usp. 50, 354 (2007).CrossRefGoogle Scholar
  42. 42.
    N. P. Malomuzh and R. R. Stepanyan, Russ. J. Phys. Chem. A 72, 521 (1998).Google Scholar
  43. 43.
    H. Ma, H.-M. Xiao, J. Song, et al., Chem. Phys. 344, 79 (2008).CrossRefGoogle Scholar
  44. 44.
    X.-H. Ju, H.-M. Xiao, and Q.-Y. Xia, J. Chem. Phys. 119, 10247 (2003).CrossRefGoogle Scholar
  45. 45.
    P. E. Janeiro-Barral and M. Mello, J. Phys. Chem. A 110, 11244 (2006).CrossRefGoogle Scholar
  46. 46.
    F. N. Keutsch, J. D. Cruzan, and R. J. Saykally, Chem. Rev. 103, 2533 (2003).CrossRefGoogle Scholar
  47. 47.
    A. A. Kravtsov, P. V. Karpov, I. I. Baskin, V. A. Palyulin, and N. S. Zefirov, Dokl. Chem. 414, 128 (2007).CrossRefGoogle Scholar
  48. 48.
    G. V. Korolev, A. A. Il’in, M. E. Solov’ev, M. M. Mogilevich, A. V. Srybnyi, and E. S. Evplonova, Polymer Sci., Ser. B 47, 1 (2005).Google Scholar
  49. 49.
    G. N. Sarkisov, Phys. Usp. 49, 809 (2006).CrossRefGoogle Scholar
  50. 50.
    A. Tokmakoff, J. Phys. Chem. A 104, 4247 (2000).CrossRefGoogle Scholar
  51. 51.
    U. Buck and F. Huisken, J. Chem. Rev. 100, 3863 (2000).CrossRefGoogle Scholar
  52. 52.
    J. M. Lisy, J. Chem. Phys. 125, 132302 (2006).CrossRefGoogle Scholar
  53. 53.
    J.-L. Kuo, Zh. Xie, D. Bing, et al., J. Phys. Chem. A 112, 10125 (2008).CrossRefGoogle Scholar
  54. 54.
    S. Barhoum and A. Jethiraj, J. Phys. Chem. B 114, 17062 (2010).CrossRefGoogle Scholar
  55. 55.
    G. Nemethy and H. A. Scheraga, J. Chem. Phys. 36, 3382 (1962).CrossRefGoogle Scholar
  56. 56.
    T. Tsukahara, M. Harada, H. Tomiyasu, et al., J. Phys. Chem. A 112, 9657 (2008).CrossRefGoogle Scholar
  57. 57.
    C. Estrellas, A. Frontera, D. Quiňonero, et al., J. Phys. Chem. A 113, 3266 (2009).CrossRefGoogle Scholar
  58. 58.
    S. Vinogradov, in Molecular Interactions, Ed. by H. Ratajczak and W. Orwil-Thomas (Wiley, New York, 1982; Mir, Moscow, 1984), rus. p. 184.Google Scholar
  59. 59.
    E. C. Lee, D. Kim, P. Jurecka, et al., J. Phys. Chem. A 111, 3446 (2007).CrossRefGoogle Scholar
  60. 60.
    B. Brutschy, J. Chem. Rev. 100, 3891 (2000).CrossRefGoogle Scholar
  61. 61.
    F. J. M. Hoeben, P. Jonkheijm, E. W. Meÿer, et al., J. Chem. Rev. 105, 1491 (2005).CrossRefGoogle Scholar
  62. 62.
    I. L. Bradeanu, N. Kosugi, R. Flesh, et al., J. Phys. Chem. A 112, 9192 (2008).CrossRefGoogle Scholar
  63. 63.
    D. M. Vriezema, M. C. Aragones, J. A. A. W. Elemants, et al., J. Chem. Rev. 105, 1445 (2005).CrossRefGoogle Scholar
  64. 64.
    S. M. Mezhikovskii, A. E. Arinshtein, and R. Ya. Deberdeev, Oligomer State of a Matter (Nauka, Moscow, 2005) [in Russian].Google Scholar
  65. 65.
    P. S. Belton and R. G. Ratcliffe, Prog. Nucl. Magn. Reson. Spectrosc. 17, 241 (1985).CrossRefGoogle Scholar
  66. 66.
    B. E. Krisyuk and G. I. Sandakov, Vysokomol. Soedin., Ser. A 37, 615 (1995).Google Scholar
  67. 67.
    S. A. Lehmann, A. D. Meltzer, and H. W. Spiess, J. Polym. Sci. B: Polym. Phys. 36, 693 (1998).CrossRefGoogle Scholar
  68. 68.
    V. G. Khozin, Oligomer Prehistory of Structure Formation of Epoxy Polymers (IPKh RAN, Chernogolovka, 2005) [in Russian].Google Scholar
  69. 69.
    A. I. Loskutov, M. P. Zagrebennikova, and L. A. Arsen’eva, Vysokomol. Soedin., Ser. B 16, 334 (1974).Google Scholar
  70. 70.
    E. M. Blyakhman, A. A. Nikitina, N. A. Zelenina, et al., Vysokomol. Soedin., Ser. A 16, 1031 (1974).Google Scholar
  71. 71.
    B. A. Komarov, E. A. Dzhavadyan, V. I. Irzhak, and B. A. Rozenberg, Polymer Sci., Ser. A 39, 153 (1997).Google Scholar
  72. 72.
    E. A. Dzhavadyan, L. M. Bogdanova, V. I. Irzhak, and B. A. Rozenberg, Polymer Sci., Ser. A 39, 383 (1997).Google Scholar
  73. 73.
    Ch. Yi Cheng and We-Yen Chiu, Macromolecules 33, 6672 (2000).CrossRefGoogle Scholar
  74. 74.
    T. P. Kulagina, G. E. Karnaukh, and L. P. Smirnov, Dokl. Phys. Chem. 421, 216 (2008).CrossRefGoogle Scholar
  75. 75.
    V. A. Shlyapochnikov, L. S. Khaikin, O. E. Grikina, N. O. Cherskaya, L. E. Maksimova, and N. F. Pyatakov, Russ. Chem. Bull. 47, 2173 (1998).CrossRefGoogle Scholar
  76. 76.
    B. Lur’e and E. Semkiv, in Proceedings of the 21st International Pyrotechnic Seminar (Inst. Prikl. Khim. Fiz. RAN, Chernogolovka, 1995), p. 547.Google Scholar
  77. 77.
    K. Lin, Y. Wang, Y. Tu, et al., J. Phys. Chem. B 112, 4387 (2008).CrossRefGoogle Scholar
  78. 78.
    C. A. Hunter, Chem. Soc. Rev. 23, 101 (1994).CrossRefGoogle Scholar
  79. 79.
    T. P. Kulagina and L. P. Smirnov, Kosm. Vyzov XXI Veka 4, 435 (2011).Google Scholar
  80. 80.
    N. F. Pyatakov, V. A. Shlyapochnikov, N. O. Cherskaya, et al., in Proceedings of the 21st International Pyrotechnic Seminar (Inst. Prikl. Khim. Fiz. RAN, Chernogolovka, 1995), p. 698.Google Scholar
  81. 81.
    B. A. Lur’e, V. P. Sinditskii, and S. P. Smirnov, Fiz. Goreniya Vzryva 39 (5), 55 (2003).Google Scholar
  82. 82.
    Yu. Shu, V. V. Dubikhin, G. M. Nazin, and G. B. Manelis, Russ. Chem. Bull. 51, 1433 (2002).CrossRefGoogle Scholar
  83. 83.
    V. V. Nedel’ko, B. L. Korsunskii, N. N. Makhova, N. V. Chukanov, T. S. Larikova, I. V. Ovchinnikov, V. A. Tartakovsky, Russ. Chem. Bull. 58, 2028 (2009).CrossRefGoogle Scholar
  84. 84.
    V. A. Ostrovskii, M. E. Podkameneva, V. S. Poplavskii, and R. E. Trifonov, Russ. Chem. Bull. 58, 2147 (2009).CrossRefGoogle Scholar
  85. 85.
    M. Sedlák, J. Phys. Chem. B 110, 4329 (2006).CrossRefGoogle Scholar
  86. 86.
    M. Sedlák and D. Rak, J. Phys. Chem. B 118, 2726 (2014).CrossRefGoogle Scholar
  87. 87.
    G. Malenkov, Y. Naberukhin, and V. Voloshin, Struct. Chem. 22, 459 (2011).CrossRefGoogle Scholar
  88. 88.
    T. A. Yinnon and C. A. Yinnon, Mod. Phys. Lett. B 26, 1150006 (2012).CrossRefGoogle Scholar
  89. 89.
    G. V. Lagodzinskaya, T. V. Laptinskaya, A. I. Kazakov, L. S. Kurochkina, and G. B. Manelis, Russ. Chem. Bull. 65, 984 (2016).CrossRefGoogle Scholar
  90. 90.
    G. B. Manelis, G. V. Lagodzinskaya, and A. I. Kazakov, A. V. Chernyak, N. G. Yunda, and L. S. Kurochkina, Russ. Chem. Bull. 62, 994 (2013).CrossRefGoogle Scholar
  91. 91.
    G. Cainelli, P. Galetti, and D. Giacomini, Chem. Soc. Rev. 38, 990 (2009).CrossRefGoogle Scholar
  92. 92.
    L. O. Kononov, RSC Adv. 5, 46718 (2015).CrossRefGoogle Scholar
  93. 93.
    Y. Uchinashi, M. Nagasaki, J. Zhou, et al., Org. Biomol. Chem. 9, 7243 (2011).CrossRefGoogle Scholar
  94. 94.
    S. Marre and K. F. Jensen, Chem. Soc. Rev. 39, 1183 (2010).CrossRefGoogle Scholar
  95. 95.
    L. O. Kononov, N. N. Malysheva, A. V. Orlova, et al., Eur. J. Org. Chem. 2012, 1926 (2012).CrossRefGoogle Scholar
  96. 96.
    V. I. Bykov and S. B. Tsybenova, Nonlinear Models of Chemical Kinetics (Krasand, Moscow, 2011) [in Russian].Google Scholar
  97. 97.
    E. A. G. Aniansson and S. N. Wall, Phys. Chem. 79, 857 (1975).CrossRefGoogle Scholar
  98. 98.
    A. E. Arinshtein, Khim. Fiz. 12 (1), 73 (1993).Google Scholar
  99. 99.
    O. N. Karpukhin, Russ. Chem. Rev. 47, 587 (1978).CrossRefGoogle Scholar
  100. 100.
    L. P. Smirnov, E. V. Deyun, and S. M. Baturin, Polymer Sci., Ser. A 40, 1238 (1998).Google Scholar
  101. 101.
    L. P. Smirnov and E. V. Deyun, in Heterophase Network Polymers. Synthesis, Characterization and Properties, Ed. by B. A. Rozenberg and G. M. Sigalov (Taylor Francis, London, New York, 2002).Google Scholar
  102. 102.
    P. A. Berlin, S. P. Bondarenko, R. P. Tiger, et al., Khim. Fiz. 3, 722 (1984).Google Scholar
  103. 103.
    S. Glasstone, K. J. Laidler, and H. Eyring, The Theory of Rate Processes: The Kinetics of Chemical Reactions, Viscosity, Diffusion and Electrochemical Phenomena (Van Nostrand, New York, 1941).Google Scholar
  104. 104.
    T. E. Lipatova, V. F. Babich, L. S. Sheinina, et al., Vysokomol. Soedin., Ser. A 20, 2051 (1978).Google Scholar
  105. 105.
    G. Nicolis and I. Prigogine, Self-Organization in Non- Equilibrium Systems (Wiley-Interscience, New York, 1977).Google Scholar
  106. 106.
    W. Ebeling, Strukturbildung bei irreversiblen Prozessen. Eine Einfuhrung in tie theorie dissipativer Strukturen (Teubner, Leipzig, 1976; Mir, Moscow, 1979) [in German].Google Scholar
  107. 107.
    T. E. Lipatova, V. K. Ivashchenko, and L. I. Bezruk, Vysokomol. Soedin., Ser. A 13, 1701 (1971).Google Scholar
  108. 108.
    L. P. Smirnov and N. N. Volkova, Progr. Colloid Polym. Sci. 90, 222 (1992).CrossRefGoogle Scholar
  109. 109.
    G. M. Khrapkovskii, A. G. Shamov, E. V. Nikolaeva, and D. V. Chachkov, Russ. Chem. Rev. 78, 903 (2009).CrossRefGoogle Scholar
  110. 110.
    V. L. Korolev, T. S. Pivina, A. A. Porollo, T. V. Petukhova, A. B. Sheremetev, and V. P. Ivshin, Russ. Chem. Rev. 78, 945 (2009).CrossRefGoogle Scholar
  111. 111.
    A. V. Shastin, V. L. Korolev, T. S. Pivina, T. I. Godovikova, B. L. Korsunskii, P. A. Belyakov, N. I. Golovina, and G. V. Shilov, Russ. Chem. Bull. 58, 2207 (2009).CrossRefGoogle Scholar
  112. 112.
    N. I. Golovina, A. N. Utenyshev, K. V. Bozhenko, N. V. Chukanov, V. V. Zakharov, and B. L. Korsounskii, Russ. J. Phys. Chem. A 83, 1153 (2009).CrossRefGoogle Scholar
  113. 113.
    V. G. Kiselev and N. P. Grizan, in Nonequilibrium Phenomena. Plasma, Combustion, Atmosphere, Ed. by G. D. Roy, S. M. Frolov, and A. M. Starik (Torus Press, Moscow, 2009), p. 20.Google Scholar
  114. 114.
    N. V. Chukanov, S. A. Vozchikova, V. A. Dubovitskii, et al., in Proceedings of the 5th All-Russia Conference on Energetic Condensed Systems (IPKhF RAN, Chernogolovka, 2010), p. 72.Google Scholar
  115. 115.
    V. V. Boldyrev, S. P. Gabuda, I. V. Drebushchak, M. A. Mikhailenko, T. P. Shakhtshneider, Dokl. Phys. Chem. 127, 117 (2009).CrossRefGoogle Scholar
  116. 116.
    Zh. Li, Yu. Bu, and H. Ai, J. Phys. Chem. B 108, 11732 (2004).CrossRefGoogle Scholar
  117. 117.
    P. G. de Gennes, Scaling Concepts in Polymer Physics (Cornell Univ., Ithaca, London, 1979).Google Scholar
  118. 118.
    D. Geheb, N. F. Kazanskaya, and I. V. Berezin, Ber. Bunsen-Ges. Phys. Chem. 72, 1 (1972).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations