Advertisement

Russian Journal of Physical Chemistry B

, Volume 10, Issue 5, pp 748–752 | Cite as

Chemical kinetic model of the chain reaction of atmospheric nitrogen oxidation initiated by electric discharge

  • V. G. Fedotov
  • E. Ya. Fedotova
Kinetics and Mechanism of Chemical Reactions. Catalysis

Abstract

To develop an adequate mathematical description of explosion in air observed under the specific conditions of electric discharge initiation, we considered a chemical kinetic model of interaction between two chain reactions: NO oxidation, which provides high concentration of О atoms required for obtaining nitrogen oxide in the processes O + N2(A 3Σ u +) → O(1 S) and O(1 S)–N2 + O → NO + NO(B 2Π) and nitrogen oxidation, which leads to electronically excited NO2* molecules required for the formation of О atoms in the oxidation of NO. This positive feedback leads to an avalanche-like increase in the concentration of О atoms and the rate of both chain reactions, i.e., causes an explosion in air initiated by electric discharge.

Keywords

electric discharge chain reaction NO oxidation atmospheric nitrogen oxidation explosion in air О atoms electronically excited molecules NO* NO2chemical kinetic model kinetic equations quasistationary concentrations method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. G. Fedotov and E. Ya. Fedotova, Russ. J. Phys. Chem. B 9, 223 (2015). http://link.springer.com/article/10.1134/S1990793115020049.CrossRefGoogle Scholar
  2. 2.
    V. G. Fedotov and E. Ya. Fedotova, Inzh. Fiz., No. 2, 23 (2015).Google Scholar
  3. 3.
    F. B. Brown and R. H. Crist, J. Chem. Phys. 9, 840 (1941).CrossRefGoogle Scholar
  4. 4.
    V. G. Fedotov and E. Ya. Fedotova, J. Phys. Chem. Biophys. 5, 1000195 (2015). doi 10.4172/2161-0398.1000195Google Scholar
  5. 5.
    V. G. Fedotov and E. Ya. Fedotova, Inzh. Fiz., No. 8, 25 (2014).Google Scholar
  6. 6.
    J. T. Herron, J. Phys. Chem. Ref. Data 28, 1453 (1999).CrossRefGoogle Scholar
  7. 7.
    A.-M. Pointu, A. Ricard, B. Dodet, et al., J. Phys. D: Appl. Phys. 38, 1905 (2005).CrossRefGoogle Scholar
  8. 8.
    G. Black, R. L. Sharpless, and T. G. Slanger, J. Chem. Phys. 63, 4546 (1975).CrossRefGoogle Scholar
  9. 9.
    V. G. Fedotov and E. Ya. Fedotova, Dokl. Phys. Chem. 444, 96 (2012).CrossRefGoogle Scholar
  10. 10.
    V. N. Kondrat’ev and E. E. Nikitin, Kinetics and Mechanism of Gas-Phase Reactions (Nauka, Moscow, 1974), p. 394 [in Russian].Google Scholar
  11. 11.
    H. Okabe, Photochemistry of Small Molecules (Wiley, New York, 1978; Mir, Moscow, 1981).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations