Russian Journal of Physical Chemistry B

, Volume 10, Issue 4, pp 687–698 | Cite as

Structural dynamic properties of nonwoven composite mixtures based on ultrafine tissues of poly(3-hydroxybutyrate) with chitosan

  • S. G. Karpova
  • A. A. Ol’khov
  • A. L. Iordanskii
  • S. M. Lomakin
  • N. S. Shilkina
  • A. A. Popov
Chemical Physics of Polymer Materials

Abstract

The structural dynamic parameters of ultrafine fibrous matrices of poly-3-hydroxybutyrate (PHB) and composite mixtures of PHB with chitosan were studied by differential scanning calorimetry, EPR spectroscopy, and scanning electron microscopy. The melting enthalpy of PHB fibers considerably increased when a small amount of chitosan was added. Amorphous regions with diverse morphology were found in the fibers under study. The dynamics of the TEMPO spin probe in these regions and its change in the fibers under the action of temperature, aqueous medium, and ozone was determined. The mechanism responsible for the effect of chitosan, temperature, and aggressive oxidating medium on the structure of ultrafine PHB fibers was suggested.

Keywords

TEMPO stable radical correlation times ultrafine fibers poly(3-hydroxybutyrate) EPR ozone oxidation aqueous medium effect temperature effect binary amorphous phase crystal melting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Mota, D. Puppi, D. Dinucci, M. Gazzarri, and F. Chiellini, J. Bioact. Compat. Polym. 28, 320 (2013).CrossRefGoogle Scholar
  2. 2.
    P. Vashisth, K. Nikhil, S. C. Pemmaraju, et al., J. Bioact. Compat. Polym. 28, 652 (2013).CrossRefGoogle Scholar
  3. 3.
    S. G. Karpova, A. L. Iordanskii, M. V. Motyakin, et al., Polym. Sci., Ser. A 57, 131 (2015).CrossRefGoogle Scholar
  4. 4.
    Z. Wang, B. Sun, M. Zhang, et al., J. Bioact. Compat. Polym. 28, 154 (2013).CrossRefGoogle Scholar
  5. 5.
    C.-H. Hung and W. W.-F. Leung, Separ. Purif. Technol. 79, 34 (2011).CrossRefGoogle Scholar
  6. 6.
    F.-G. Banica, Chemical Sensors: Biosensors, Fundamentals and Applications (Wiley, New York, 2012).CrossRefGoogle Scholar
  7. 7.
    A. Kulkarni, V. A. Bambole, and P. A. Mahanwar, Polym.-Plast. Technol. Eng. 49, 427 (2010).CrossRefGoogle Scholar
  8. 8.
    T. Dvir, B. P. Timko, D. S. Kohane, and R. Langer, Nat. Nanotechnol. 6, 13 (2011).CrossRefGoogle Scholar
  9. 9.
    P. Raghavan, D.-H. Lim, J.-H. Ahn, et al., React. Funct. Polym. 72, 915 (2012).CrossRefGoogle Scholar
  10. 10.
    A. Baji, Y.-W. Mai, S.-C. Wong, M. Abtahi, and P. Chen, Comp. Sci. Technol. 70, 703 (2010).CrossRefGoogle Scholar
  11. 11.
    A. A. Ol’khov, V. S. Markin, R. Yu. Kosenko, M. A. Gol’dshtrakh, and A. L. Iordanskii, Russ. J. Appl. Chem. 88, 308 (2015).CrossRefGoogle Scholar
  12. 12.
    S. G. Karpova, A. L. Iordanskii, S. N. Chvalun, M. A. Shcherbina, S. M. Lomakin, N. G. Shilkina, S. Z. Rogovina, V. S. Markin, A. A. Popov, and A. A. Berlin, Dokl. Phys. Chem. 446, 176 (2012).CrossRefGoogle Scholar
  13. 13.
    A. P. Bonartsev, V. A. Livshits, T. A. Makhina, et al., Expr. Polym. Lett. 1, 797 (2007).CrossRefGoogle Scholar
  14. 14.
    E. L. Ivantsova, R. Yu. Kosenko, A. L. Iordanskii, et al., Polym. Sci., Ser. A 54, 87 (2012).CrossRefGoogle Scholar
  15. 15.
    H. Ueda and Y. Tabata, Adv. Drug Deliv. Rev. 55, 501 (2003).CrossRefGoogle Scholar
  16. 16.
    A. L. Iordanskii, Yu. N. Pankova, R. Yu. Kosenko, and A. A. Ol’khov, in Chemical and Biological Kinetics. New Horizons (Khimiya, Moscow, 2005), Vol. 1, p. 640 [in Russian].Google Scholar
  17. 17.
    Yu. N. Pankova, A. N. Shchegolikhin, A. L. Iordanskii, et al., J. Mol. Liq. 156, 65 (2010).CrossRefGoogle Scholar
  18. 18.
    A. L. Iordanskii, S. Z. Rogovina, R. Yu. Kosenko, E. L. Ivantsova, and E. V. Prut, Dokl. Phys. Chem. 431, 60 (2010).CrossRefGoogle Scholar
  19. 19.
    E. L. Ivantsova, R. Yu. Kosenko, A. L. Iordanskii, S. Z. Rogovina, E. V. Prut, A. G. Filatova, K. Z. Gumargalieva, S. P. Novikova, and A. A. Berlin, Polymer Sci., Ser. A 54, 87 (2012).CrossRefGoogle Scholar
  20. 20.
    Yu. N. Filatov, Electric Formation of Fibrous Materials (EFF-Process), Ed. by V. N. Kirichenko (Neft’ Gaz, Moscow, 1997) [in Russian].Google Scholar
  21. 21.
    A. A. Olkhov, O. V. Staroverova, A. P. Bonartsev, et al., Polym. Sci., Ser. D 8, 100 (2015).CrossRefGoogle Scholar
  22. 22.
    D. E. Budil, S. Lee, S. Saxena, and J. H. Freed, J. Magn. Reson., Ser. A 120, 155 (1996).CrossRefGoogle Scholar
  23. 23.
    V. P. Timofeev, A. Yu. Misharin, and Ya. V. Tkachev, Biophysics 56, 407 (2011).CrossRefGoogle Scholar
  24. 24.
    A. L. Buchachenko and A. M. Vasserman, Stable Radicals (Khimiya, Moscow, 1973) [in Russian].Google Scholar
  25. 25.
    A. A. Olkhov, O. V. Staroverova, A. L. Iordanskii, and G. E. Zaikov, in Proceedings of the 7th International Conference on Times of Polymers (TOP) and Composites (U. S. Headquarters: AIP Publ., 2014), Vol. 1599, p. 558. doi 10.1063/1.4876902Google Scholar
  26. 26.
    O. V. Staroverova, A. M. Shushkevich, G. M. Kuz’micheva, et al., Tekhnol. Zhiv. Sistem 10 (8), 74 (2013).Google Scholar
  27. 27.
    G. C. Rutledge and S. V. Fridrikh, Adv. Drug Deliv. Rev. 59, 1384 (2007).CrossRefGoogle Scholar
  28. 28.
    I. I. Zharkova, O. V. Staroverova, V. V. Voinova, et al., Biomed. Khim. 60, 553 (2014).CrossRefGoogle Scholar
  29. 29.
    A. N. Ozerin, Cand. Sci. (Chem.) Dissertation (Karpov Phys. Chem. Inst., Moscow, 1977).Google Scholar
  30. 30.
    A. Keller and M. Willmouth, Macromol. Chem. 141, 91 (1994).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • S. G. Karpova
    • 1
  • A. A. Ol’khov
    • 2
    • 3
  • A. L. Iordanskii
    • 3
  • S. M. Lomakin
    • 1
  • N. S. Shilkina
    • 3
  • A. A. Popov
    • 1
    • 2
  1. 1.Emanuel Institute of Biochemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Plekhanov Russian University of EconomicsMoscowRussia
  3. 3.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations