Advertisement

Russian Journal of Physical Chemistry B

, Volume 10, Issue 3, pp 511–516 | Cite as

Study of interactions of 2-benzamido-4-methylpentanoic acid-2-cyclohexyl carboxamide with BSA: Gel exclusion chromatography and molecular modeling techniques

  • S. B. Thakare
  • P. V. Tekade
  • S. Pande
Chemical Physics of Biological Processes
  • 37 Downloads

Abstract

Plasma protein in blood play an important role in transportation of drug. So it is important to know the binding of drug with plasma protein. In this study we successfully observed the interaction of 2-benzamido-4-methylpentanoic acid-2-cyclohexyl carboxamide ligand (2-bmca) with Bovine serum albumin (BSA) using gel exclusion chromatographic technique at different pH. Absorbance value for collected fraction was measured on UV-vis Spectrophotometer. Differences in the absorbance value of collected fraction give the specific binding of interacting species with BSA. Interacting study shows that ligand (L) bounds to the BSA more significantly at pH 3 than at pH 4 and 5, which shows binding is more at acidic pH. Scatchard analysis gives the association constants (K f) and the saturation value (n) for ligand(L) with BSA. Molecular modeling study gives the efficient energy value–231.16 which confirms the binding of ligand (L) with BSA.

Keywords

gel exclusion chromatography protein-drug binding Scatchard analysis association constant BSA molecular modeling study 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. A. Ahmad and H. J. Roggers, Brit. J. Clin. Pharmacol. 10, 519 (1980).CrossRefGoogle Scholar
  2. 2.
    U. Riaz, S. Nadia, and A. Md. Ashraful, Int. Curr. Pharm. J. 1, 361 (2012).Google Scholar
  3. 3.
    H. J. Yan, Y. O. Yang, Y. Zhang, and Y. Liu, Protein J. 29, 234 (2010).CrossRefGoogle Scholar
  4. 4.
    L. Fielding, S. Rutherford, and D. Fletcher, Magn. Res. Chem. 43, 463 (2005).CrossRefGoogle Scholar
  5. 5.
    J. C. Kraak, S. Busch, and H. Poppe, J. Chromatogr. 608, 257 (1992).CrossRefGoogle Scholar
  6. 6.
    K. J. Pacholarz, R. A. Garlish, R. J. Taylor, and P. E. Barran, Chem. Soc. Rev. 41, 4335 (2012).CrossRefGoogle Scholar
  7. 7.
    P. Lopes and R. Kataky, Anal. Chem. 84, 2299 (2012).CrossRefGoogle Scholar
  8. 8.
    J. A. Queiroz, C. T. Tomaz, and J. M. S. Cabral, J. Biotechnol. 87, 143 (2001).CrossRefGoogle Scholar
  9. 9.
    A. Mahbulal and N. Reza, Biol. Sci. 7, 79 (2004).Google Scholar
  10. 10.
    U. Anand, C. Jash, A. Shrivastava, et al., Phys. Chem. Chem. Phys. 14, 4250 (2012).CrossRefGoogle Scholar
  11. 11.
    S. Nafisi and S. G. Bagheri, J. Photochem. Photobiol. 105, 198 (2011).CrossRefGoogle Scholar
  12. 12.
    S. Chakraborty, P. Joshi, and S. Dey, J. Colloid Interface Sci. 355, 402 (2010).Google Scholar
  13. 13.
    L. Arons, D. M. Grennan, and M. Siddiqui, Eur. J. Clin. Pharmacol. 25, 815 (1983).CrossRefGoogle Scholar
  14. 14.
    Yi-hong. Tang, Jun-Yan Wang, Su Zeng, et al., J. Pharm. Anal. 2, 220 (2012).CrossRefGoogle Scholar
  15. 15.
    M. J. Hartshorn, C. W. Murray, R. D. Taylor, et al., J. Med. Chem. 50, 726 (2007).CrossRefGoogle Scholar
  16. 16.
    M. Taufer, M. Crowley, D. A. Price, A. A. Chien, and Ch. L. Brooks, Concurr. Comput. 17, 1627 (2005).CrossRefGoogle Scholar
  17. 17.
    Li Ying, Wen Ying He, Yu Ming Dong, et al., Bioorg. Med. Chem. 14, 1431 (2006).CrossRefGoogle Scholar
  18. 18.
    S. V. Pande, P. S. Utale, S. B. Gholse, P. V. Tekade, and S. G. Patil, Pharm. Chem. 48, 29 (2014)CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Department of ChemistryJankidevi Bajaj College of ScienceWardhaIndia
  2. 2.Department of ChemistryLaxminarayan Institute of TechnologyNagpurIndia

Personalised recommendations