Russian Journal of Physical Chemistry B

, Volume 10, Issue 3, pp 524–530 | Cite as

Mechanical property of hydrous amorphous cellulose studied by molecular dynamics

  • M. Z. Zhu
  • Y. F. Chen
  • W. B. Zhu
  • X. M. Du
  • J. B. Zhou
  • C. Gu
  • R. J. Liao
Chemical Physics of Polymer Materials
  • 51 Downloads

Abstract

The mechanical property of cellulose is universally considered as an important parameter, which reflects the service life of cellulosic insulation paper in the transformer. In this work, the mechanical property of hydrous amorphous cellulose has been studied using molecular dynamics. Analysis of the mechanical parameters of amorphous cellulose cells reveals that amorphous cellulose remains isotropic either in the hydrous or in the anhydrous state, but shows a weakening trend in mechanical property with the increase of water content. Both intramolecular and intermolecular hydrogen bonds in cellulose molecules decrease with increasing water content, directly leading to the decline of cellulose cohesive energy density, solubility parameters, and mechanical parameters. High water content in amorphous cellulose gives bigger interchain distance of cellulose molecules, indicating that the intermolecular interaction of cellulose molecules is weakened greatly by water.

Keywords

mechanical property cellulose molecular dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. A. Prevost and T. V. Oommen, IEEE Electr. Insul. M 22 1, 28 (2006).CrossRefGoogle Scholar
  2. 2.
    T. V. Oommen and T. A. Prevost, IEEE Electr. Insul. M 22 2, 5 (2006).CrossRefGoogle Scholar
  3. 3.
    A. M. Emsley and G. C. Stevens, IET Sci. Meas. Technol. 141, 324 (1994).CrossRefGoogle Scholar
  4. 4.
    H. Qing and L. Mishnaevsky, Comp. Mater. Sci. 46, 310 (2009).CrossRefGoogle Scholar
  5. 5.
    L. E. Lundgaard, W. Hansen, and S. Ingebrigtsen, IEEE Trans. Dielectr. Electr. Insul. 15, 540 (2008).CrossRefGoogle Scholar
  6. 6.
    J. F. Matthews, C. E. Skopec, P. E. Mason, et al., Carbohyd. Res. 341, 138 (2006).CrossRefGoogle Scholar
  7. 7.
    D. M. Leneveu, R. P. Rand, and V. A. Parsegian, Nature 259, 601 (1976).CrossRefGoogle Scholar
  8. 8.
    S. H. Lee and P. J. Rossky, J. Chem. Phys. 100, 3334 (1994).CrossRefGoogle Scholar
  9. 9.
    A. P. Heiner and O. Teleman, Langmuir 13, 511 (1997).CrossRefGoogle Scholar
  10. 10.
    A. P. Heiner, L. Kuutti, and O. Teleman, Carbohyd. Res. 306, 205 (1998).CrossRefGoogle Scholar
  11. 11.
    K. L. Yin, D. H. Zou, J. Zhong, and D. J. Xu, Comp. Mater. Sci. 38, 538 (2007).CrossRefGoogle Scholar
  12. 12.
    A. R. Leach, Molecular Modelling: Principles and Applications, 2nd ed. (Prentice-Hall, UK, 2001).Google Scholar
  13. 13.
    K. Mazeau and L. Heux, J. Phys. Chem. B 107, 2394 (2003).CrossRefGoogle Scholar
  14. 14.
    W. Chen, G. C. Lickfield, and C. Q. Yang, Polymer 45, 1063 (2004).CrossRefGoogle Scholar
  15. 15.
    W. Chen, G. C. Lickfield, and C. Q. Yang, Polymer 45, 7357 (2004).CrossRefGoogle Scholar
  16. 16.
    D. N. Theodorou and U. W. Suter, Macromolecules 18, 1467 (1985).CrossRefGoogle Scholar
  17. 17.
    J. Brandrup, E. H. Immergut, and E. A. Grulke, Polymer Handbook (Wiley-Interscience, New York, 1999).Google Scholar
  18. 18.
    J. R. Maple, U. Dinur, and A. T. Hagler, Natl. Acad. Sci. USA 85, 5350 (1988).CrossRefGoogle Scholar
  19. 19.
    J. R. Maple, M. J. Hwang, T. P. Stockfisch, et al., J. Comput. Chem. 15, 162 (1994).CrossRefGoogle Scholar
  20. 20.
    J. R. Maple, M. J. Hwang, T. P. Stockfisch, and A. T. Hagler, Isr. J. Chem. 34, 195 (1994).CrossRefGoogle Scholar
  21. 21.
    H. Sun, S. J. Mumby, J. R. Maple, and A. T. Hagler, J. Am. Chem. Soc. 116, 2978 (1994).CrossRefGoogle Scholar
  22. 22.
    H. Sun, Macromolecules 28, 701 (1995).CrossRefGoogle Scholar
  23. 23.
    H. J. C. Berendsen, J. P. M. Postma, and W. F. Funsteren, J. Chem. Phys. 81, 3684 (1984).CrossRefGoogle Scholar
  24. 24.
    T. A. Andrea, W. C. Swope, and H. C. Andersen, J. Chem. Phys. 79, 4576 (1983).CrossRefGoogle Scholar
  25. 25.
    P. P. Ewald, Ann. Phys. (N.Y.) 64, 253 (1921).CrossRefGoogle Scholar
  26. 26.
    Materials Studio 4.0 (Accelrys, San Diego, CA, 2005).Google Scholar
  27. 27.
    J. H. Hildebrand and R. L. Scott, The Solubility of Nonelectrolytes, 3rd ed. (Reinhold, New York, 1950).Google Scholar
  28. 28.
    T. Pullawan, A. N. Wilkinson, and S. J. Eichhorn, Compos. Sci. Technol. 70, 2325 (2010).CrossRefGoogle Scholar
  29. 29.
    Y. Nishiyama, P. Langan, and H. Chanzy, J. Am. Chem. Soc. 124, 9074 (2002).CrossRefGoogle Scholar
  30. 30.
    C. M. Hansen, Prog. Org. Coat. 51, 77 (2004).CrossRefGoogle Scholar
  31. 31.
    J. R. Fried, M. Sadat-Akhavi, and J. E. Mark, J. Membr. Sci. 149, 115 (1998).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • M. Z. Zhu
    • 1
  • Y. F. Chen
    • 1
  • W. B. Zhu
    • 1
  • X. M. Du
    • 1
  • J. B. Zhou
    • 1
  • C. Gu
    • 1
  • R. J. Liao
    • 2
  1. 1.Shandong Electric Power Research InstituteJinan, ShandongChina
  2. 2.State Key Laboratory of Power Transmission Equipment and System Security and New TechnologyChongqing UniversityChongqingChina

Personalised recommendations