Russian Journal of Physical Chemistry B

, Volume 10, Issue 2, pp 341–352 | Cite as

Kinetics of N2O5 uptake on a methane soot coating

  • V. V. Zelenov
  • E. V. Aparina
  • S. A. Kashtanov
  • E. V. Shardakova
Chemical Physics of Atmospheric Phenomena
  • 38 Downloads

Abstract

The uptake of N2O5 on a soot coating at Т = 255 and 298 K was studied by low-voltage electron ionization using a thermostatted flow reactor with a mobile insert with soot deposited on it and a mass spectrometer while varying the N2O5 concentration in the range 1.3 × 1012–3.3 × 1013 cm–3. A series of timedependent N2O5 uptake coefficients on fresh soot coatings were recorded in the indicated range of reactant gas concentrations. The uptake coefficient is described by the equation l/γ(t) = l/γ0 + at. The dependences of the γ0 and а parameters of this equation on the N2O5 concentration were determined: l/γ0 = 1/γ 0 ini (1 + K L[N2O5]), a = k[N2O5] with the constants k, γ 0 ini , and K L equal to (0.8 ± 0.1) × 10–10 cm3 s–1, (4.2 ± 1.9) × 10–4, and (2.3 ± 0.8) × 10–13 cm3 (255 K) and (1.1 ± 0.1) × 10–10 cm3 s–1, (5.5 ± 0.2) × 10–5, and (7.4 ± 1.4) × 10–15 cm3 (298 K), respectively. The uptake is the result of the joint action of physical sorption and chemical reaction. NO was recorded as the only gas-phase product of uptake. The quantity of NO corresponds to ~60% of consumed N2O5. A description of the initial uptake of N2O5 was suggested based on the Langmuir concept of adsorption. It follows from the model description of the experimental dependences that K L is the Langmuir constant. Other constants were evaluated: the rate constant of desorption k d = 108 ± 17 (255 K) and 4030 ± 320 s–1 (298 K) and its adsorption heat Q ad = (52.4 ± 2.6) kJ mol–1; the rate constant of the monomolecular heterogeneous reaction k r = 0.2 ± 0.01 (255 K) and 0.8 ± 0.05 s–1 (298 K) and its activation energy E a = (21.9 ± 1) kJ mol–1.

Keywords

tropospheric chemistry N2O5 methane soot uptake coefficient Langmuir coefficient desorption rate constant adsorption heat rate constant activation energy gas-phase products 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. L. Chang, P. V. Bhave, S. S. Brown, et al., Aerosol Sci. Technol. 45, 665 (2011).CrossRefGoogle Scholar
  2. 2.
    N. L. Wagner, T. P. Riedel, C. J. Young, et al., J. Geophys. Res. Atmosph. 118, 9331 (2013).CrossRefGoogle Scholar
  3. 3.
    C. L. Reddington, G. McMeeking, G. W. Mann, et al., Atmos. Chem. Phys. 13, 4917 (2013).CrossRefGoogle Scholar
  4. 4.
    B. Croft, U. Lohmann, and K. von Salzen, Atmos. Chem. Phys. 5, 1931 (2005).CrossRefGoogle Scholar
  5. 5.
    R. Wang, S. Tao, H. Shen, et al., Environ. Sci. Technol. 48, 6780 (2014).CrossRefGoogle Scholar
  6. 6.
    K. Pohl, M. Cantwell, P. Herckes, and R. Lohmann, Atmos. Chem. Phys. 14, 7431 (2014).CrossRefGoogle Scholar
  7. 7.
    A. Berner, S. Sidla, Z. Galambos, et al., J. Geophys. Res. Atmosph. 101, 19559 (1996).CrossRefGoogle Scholar
  8. 8.
    A. Petzold, J. Strom, F. P. Schroder, and B. Karcher, Atmos. Environ. 33, 2689 (1999).CrossRefGoogle Scholar
  9. 9.
    S. P. Sander, J. Abbatt, R. Barker, et al., JPL Publ. 10-6, No. 17 (2011). http://jpldataevaljplnasagovGoogle Scholar
  10. 10.
    T. P. Riedel, T. H. Bertram, O. S. Ryder, et al., Atmos. Chem. Phys. 12, 2959 (2012).CrossRefGoogle Scholar
  11. 11.
    L. Brower, M. J. Rossi, and D. M. Golden, J. Phys. Chem. 90, 4599 (1986).CrossRefGoogle Scholar
  12. 12.
    C. A. Longfellow, A. R. Ravishankara, and D. R. Hanson, J. Geophys. Res. Atmosph. 105, 24345 (2000).CrossRefGoogle Scholar
  13. 13.
    H. Saathoff, K.-H. Naumann, N. Riemer, et al., Geophys. Res. Lett. 28, 1957 (2001).CrossRefGoogle Scholar
  14. 14.
    F. Karagulian and M. J. Rossi, J. Phys. Chem. A 111, 1914 (2007).CrossRefGoogle Scholar
  15. 15.
    K. J. Laidler, Chemical Kinetics, 2nd ed. (McGraw-Hill, New York, 1965).Google Scholar
  16. 16.
    V. V. Zelenov, E. V. Aparina, A. V. Chudinov, and S. A. Kashtanov, Russ. J. Phys. Chem. B 4, 399 (2010).CrossRefGoogle Scholar
  17. 17.
    S. Lelievre, Yu. Bedjanian, G. Laverdet, and G. Le Bras, J. Phys. Chem. A 108, 10807 (2004).CrossRefGoogle Scholar
  18. 18.
    V. V. Zelenov, E. V. Aparina, S. A. Kashtanov, and E. V. Shardakova, Russ. J. Phys. Chem. B 9, 327 (2015).CrossRefGoogle Scholar
  19. 19.
    A. I. Efimov, L. P. Belorukova, I. V. Vasil’kova, and V. P. Chechev, Properties of Inorganic Compounds, The Handbook (Khimiya, Leningrad, 1983) [in Russian].Google Scholar
  20. 20.
    Yu. M. Gershenzon, V. M. Grigorieva, A. V. Ivanov, and R. G. Remorov, Farad. Discuss. 100, 83 (1995).CrossRefGoogle Scholar
  21. 21.
    V. Zelenov and E. Aparina, in Chlorine Properties, Applications and Health Effect, Ed. by R. Mangione and D. Carlyle (Nova Science, 2011). wwwnovapublisherscom/catalog/product_infophp?products_id=351Google Scholar
  22. 22.
    C. E. Colb, R. A. Cox, J. P. D. Abbatt, et al., Atmos. Chem. Phys. 10, 10561 (2010).CrossRefGoogle Scholar
  23. 23.
    A. Gerecke, A. Thielmann, L. Gutzwiller, and M. J. Rossi, Geophys. Res. Lett. 25, 2453 (1998).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • V. V. Zelenov
    • 1
  • E. V. Aparina
    • 1
  • S. A. Kashtanov
    • 2
  • E. V. Shardakova
    • 1
  1. 1.Tal’rose Institute for Energy Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  2. 2.Institute of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations