Skip to main content
Log in

Kinetics of N2O5 uptake on a methane soot coating

  • Chemical Physics of Atmospheric Phenomena
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The uptake of N2O5 on a soot coating at Т = 255 and 298 K was studied by low-voltage electron ionization using a thermostatted flow reactor with a mobile insert with soot deposited on it and a mass spectrometer while varying the N2O5 concentration in the range 1.3 × 1012–3.3 × 1013 cm–3. A series of timedependent N2O5 uptake coefficients on fresh soot coatings were recorded in the indicated range of reactant gas concentrations. The uptake coefficient is described by the equation l/γ(t) = l/γ0 + at. The dependences of the γ0 and а parameters of this equation on the N2O5 concentration were determined: l/γ0 = 1/γ ini0 (1 + K L[N2O5]), a = k[N2O5] with the constants k, γ ini0 , and K L equal to (0.8 ± 0.1) × 10–10 cm3 s–1, (4.2 ± 1.9) × 10–4, and (2.3 ± 0.8) × 10–13 cm3 (255 K) and (1.1 ± 0.1) × 10–10 cm3 s–1, (5.5 ± 0.2) × 10–5, and (7.4 ± 1.4) × 10–15 cm3 (298 K), respectively. The uptake is the result of the joint action of physical sorption and chemical reaction. NO was recorded as the only gas-phase product of uptake. The quantity of NO corresponds to ~60% of consumed N2O5. A description of the initial uptake of N2O5 was suggested based on the Langmuir concept of adsorption. It follows from the model description of the experimental dependences that K L is the Langmuir constant. Other constants were evaluated: the rate constant of desorption k d = 108 ± 17 (255 K) and 4030 ± 320 s–1 (298 K) and its adsorption heat Q ad = (52.4 ± 2.6) kJ mol–1; the rate constant of the monomolecular heterogeneous reaction k r = 0.2 ± 0.01 (255 K) and 0.8 ± 0.05 s–1 (298 K) and its activation energy E a = (21.9 ± 1) kJ mol–1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. L. Chang, P. V. Bhave, S. S. Brown, et al., Aerosol Sci. Technol. 45, 665 (2011).

    Article  Google Scholar 

  2. N. L. Wagner, T. P. Riedel, C. J. Young, et al., J. Geophys. Res. Atmosph. 118, 9331 (2013).

    Article  CAS  Google Scholar 

  3. C. L. Reddington, G. McMeeking, G. W. Mann, et al., Atmos. Chem. Phys. 13, 4917 (2013).

    Article  CAS  Google Scholar 

  4. B. Croft, U. Lohmann, and K. von Salzen, Atmos. Chem. Phys. 5, 1931 (2005).

    Article  CAS  Google Scholar 

  5. R. Wang, S. Tao, H. Shen, et al., Environ. Sci. Technol. 48, 6780 (2014).

    Article  CAS  Google Scholar 

  6. K. Pohl, M. Cantwell, P. Herckes, and R. Lohmann, Atmos. Chem. Phys. 14, 7431 (2014).

    Article  CAS  Google Scholar 

  7. A. Berner, S. Sidla, Z. Galambos, et al., J. Geophys. Res. Atmosph. 101, 19559 (1996).

    Article  CAS  Google Scholar 

  8. A. Petzold, J. Strom, F. P. Schroder, and B. Karcher, Atmos. Environ. 33, 2689 (1999).

    Article  CAS  Google Scholar 

  9. S. P. Sander, J. Abbatt, R. Barker, et al., JPL Publ. 10-6, No. 17 (2011). http://jpldataevaljplnasagov

  10. T. P. Riedel, T. H. Bertram, O. S. Ryder, et al., Atmos. Chem. Phys. 12, 2959 (2012).

    Article  CAS  Google Scholar 

  11. L. Brower, M. J. Rossi, and D. M. Golden, J. Phys. Chem. 90, 4599 (1986).

    Article  Google Scholar 

  12. C. A. Longfellow, A. R. Ravishankara, and D. R. Hanson, J. Geophys. Res. Atmosph. 105, 24345 (2000).

    Article  CAS  Google Scholar 

  13. H. Saathoff, K.-H. Naumann, N. Riemer, et al., Geophys. Res. Lett. 28, 1957 (2001).

    Article  CAS  Google Scholar 

  14. F. Karagulian and M. J. Rossi, J. Phys. Chem. A 111, 1914 (2007).

    Article  CAS  Google Scholar 

  15. K. J. Laidler, Chemical Kinetics, 2nd ed. (McGraw-Hill, New York, 1965).

    Google Scholar 

  16. V. V. Zelenov, E. V. Aparina, A. V. Chudinov, and S. A. Kashtanov, Russ. J. Phys. Chem. B 4, 399 (2010).

    Article  Google Scholar 

  17. S. Lelievre, Yu. Bedjanian, G. Laverdet, and G. Le Bras, J. Phys. Chem. A 108, 10807 (2004).

    Article  CAS  Google Scholar 

  18. V. V. Zelenov, E. V. Aparina, S. A. Kashtanov, and E. V. Shardakova, Russ. J. Phys. Chem. B 9, 327 (2015).

    Article  CAS  Google Scholar 

  19. A. I. Efimov, L. P. Belorukova, I. V. Vasil’kova, and V. P. Chechev, Properties of Inorganic Compounds, The Handbook (Khimiya, Leningrad, 1983) [in Russian].

    Google Scholar 

  20. Yu. M. Gershenzon, V. M. Grigorieva, A. V. Ivanov, and R. G. Remorov, Farad. Discuss. 100, 83 (1995).

    Article  CAS  Google Scholar 

  21. V. Zelenov and E. Aparina, in Chlorine Properties, Applications and Health Effect, Ed. by R. Mangione and D. Carlyle (Nova Science, 2011). wwwnovapublisherscom/catalog/product_infophp?products_id=351

  22. C. E. Colb, R. A. Cox, J. P. D. Abbatt, et al., Atmos. Chem. Phys. 10, 10561 (2010).

    Article  Google Scholar 

  23. A. Gerecke, A. Thielmann, L. Gutzwiller, and M. J. Rossi, Geophys. Res. Lett. 25, 2453 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Zelenov.

Additional information

Original Russian Text © V.V. Zelenov, E.V. Aparina, S.A. Kashtanov, E.V. Shardakova, 2016, published in Khimicheskaya Fizika, 2016, Vol. 35, No. 4, pp. 78–91.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zelenov, V.V., Aparina, E.V., Kashtanov, S.A. et al. Kinetics of N2O5 uptake on a methane soot coating. Russ. J. Phys. Chem. B 10, 341–352 (2016). https://doi.org/10.1134/S1990793116020251

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793116020251

Keywords

Navigation