Advertisement

Russian Journal of Physical Chemistry B

, Volume 10, Issue 2, pp 263–271 | Cite as

Surface combustion on a ceramics-coated foamed-metal matrix

  • V. M. Shmelev
  • V. M. Nikolaev
Combustion, Explosion, and Shock Waves

Abstract

The results of a comparative study of the characteristics of surface combustion in the infrared mode on a flat and volumetric foamed-metal matrix with a ceramic (alumina) coating are reported. The coating of thickness ~200 μm was applied by using the detonation method. It was shown that the covering of the matrix with a material having a lower emissivity and thermal diffusivity causes the flame front to immerse into the matrix and increases the surface layer temperature. For combustion on a flat matrix at a firing rate of ~75 W/cm2, the concentrations of nitrogen oxides and carbon monoxide were up to two times lower. For combustion in a volumetric matrix at a firing rate of ~30 W/cm2, the reduction in the concentration of nitrogen oxides was two to three times lower.

Keywords

surface combustion radiant burners combustion limits 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. N. Bryukhanov, Radiation-convective Heat Transfer during Gas Combustion in Perforated Systems (Leningr. Gos. Univ., Leningrad, 1977) [in Russian].Google Scholar
  2. 2.
    F. Cristo and L. Krishnamoorthy, Report DSTO-TR-1157 (Australia, 2001).Google Scholar
  3. 3.
    P. H. Bouma and L. P. H. Goey, Combust. Flame 119, 133 (1999).CrossRefGoogle Scholar
  4. 4.
    S. Nemoda, D. Trimis, and G. Zivkovic, Thermal Sci. 8, 3 (2004).CrossRefGoogle Scholar
  5. 5.
    G. Toniato, A. Zambon, A. Lovato, M. Tomasetto, and G. Mazaccavallo, in Proceedings of the 29th Meeting of the Italian Section of the Combustion Institute, Pisa, Italy, 2006, p. I3.1.Google Scholar
  6. 6.
    V. M. Shmelev, Russ. J. Phys. Chem. B 4, 593 (2010).CrossRefGoogle Scholar
  7. 7.
    M. M. Kamal and A. A. Mohamad, J. Power Energy 220, 487 (2006).CrossRefGoogle Scholar
  8. 8.
    M. A. Mujeebua, M. Z. Abdullah, M. Z. Abu Bakar, A. A. Mohamad, et al., J. Environ. Manag. 90, 2287 (2009).CrossRefGoogle Scholar
  9. 9.
    V. M. Nikolaev, V. M. Shmelev, and V. S. Arutyunov, in Combustion and Explosion, Ed. by S. M. Frolov (Torus Press, Moscow, 2011), No. 4, p. 57 [in Russian].Google Scholar
  10. 10.
    V. M. Shmelev, in Combustion and Explosion, Ed. by S. M. Frolov (Torus Press, Moscow, 2012), No. 5, p. 101 [in Russian].Google Scholar
  11. 11.
    M. Golombok, A. Prothero, L. Shirvill, and L. Small, Combust. Sci. Technol. 77, 203 (1991).CrossRefGoogle Scholar
  12. 12.
    V. M. Shmelev, Gazov. Promyshl., No. 5, 74 (2008).Google Scholar
  13. 13.
    E. J. Cookson and R. L. Cowan, US Patent No. 20080227044 (2007).Google Scholar
  14. 14.
    E. P. Volkov, A. I. Polivoda, and F. A. Polivoda, Izv. Akad. Nauk, Energet., No. 3, 9 (2005).Google Scholar
  15. 15.
    V. M. Shmelev, Russ. J. Phys. Chem. B 4, 593 (2010).CrossRefGoogle Scholar
  16. 16.
    V. Shmelev, Combust. Sci. Technol. 186, 943 (2014).CrossRefGoogle Scholar
  17. 17.
    Yu. N. Tyurin, N. Ya. Vasilik, O. V. Kolisnichenko, M. G. Kovaleva, and M. S. Prozorova, in Combustion and Explosion, Ed. by S. M. Frolov (Torus Press, Moscow, 2011), No. 6, p. 123 [in Russian].Google Scholar
  18. 18.
    T. Takeno and K. Sato, Combust. Sci. Technol. 20, 73 (1979).CrossRefGoogle Scholar
  19. 19.
    A. A. Mohamad, R. Viskanta, and S. Ramadhyani, Combust. Sci. Technol. 96, 387 (1994).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations