Russian Journal of Physical Chemistry B

, Volume 10, Issue 1, pp 69–76 | Cite as

Radio-frequency superradiance induced by the rheological explosion of polymer composites containing paramagnetic cobalt complexes

  • A. I. Aleksandrov
  • I. A. Aleksandrov
  • S. B. Zezin
  • E. N. Degtyarev
  • A. A. Dubinskiy
  • S. S. Abramchuk
  • A. I. Prokof’ev
Chemical Physics of Polymer Materials


Superradiance induced by the rheological explosion of composites based on polystyrene, cobalt acetylacetonate, and/or 3,5-di-tert-butylcatechol has been investigated. The superradiance intensity is determined by solid-phase chemical reactions induced by the rheological explosion. EPR, X-ray diffraction, and electron microscopic characterization of stable products resulting from the rheological explosion in the polymer matrix has demonstrated that the superradiance intensity is related to the electronic properties and structure of two-spin intermediates, namely, radical pairs and organoelement biradicals.


rheological explosion superradiance polymer triplet state annihilation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. W. Bridgman, Phys. Rev. 48, 825 (1935).CrossRefGoogle Scholar
  2. 2.
    P. W. Bridgman, Rev. Mod. Phys. 18, 1 (1946).CrossRefGoogle Scholar
  3. 3.
    E. G. Fateev, Phys. Rev. E 65, N021403 (2002).CrossRefGoogle Scholar
  4. 4.
    I. A. Aleksandrov, O. T. Gritsenko, E. V. Getmanova, E. S. Obolonkova, O. A. Serenko, V. G. Shevchenko, A. I. Aleksandrov, and A. M. Muzafarov, Tech. Phys. 56, 491 (2011).CrossRefGoogle Scholar
  5. 5.
    A. I. Aleksandrov, I. A. Aleksandrov, A. I. Prokof’ev, and N. N. Bubnov, Russ. Chem. Bull. 48, 1599 (1999).CrossRefGoogle Scholar
  6. 6.
    R. H. Dicke, Phys. Rev. 93, 99 (1954).CrossRefGoogle Scholar
  7. 7.
    V. M. Fain, Usp. Fiz. Nauk 64, 273 (1958).CrossRefGoogle Scholar
  8. 8.
    N. Skribanowitz, I. P. Hermann, M. S. MacGillivray, et al., Phys. Rev. Lett. 30, 309 (1973).CrossRefGoogle Scholar
  9. 9.
    S. V. Zaitsev, V. Yu. Gordeev, M. P. Soshnikov, et al., J. Appl. Phys. 84, 5441 (1998).CrossRefGoogle Scholar
  10. 10.
    A. V. Andreev, V. I. Emel’yanov, and Yu. A. Il’inskii, Sov. Phys. Usp. 23, 493 (1980).CrossRefGoogle Scholar
  11. 11.
    P. V. Zinov’ev, S. V. Lopina, Yu. V. Naboikin, et al., Sov. Phys. JETP 58, 1129 (1983).Google Scholar
  12. 12.
    V. V. Zheleznyakov, V. V. Kocharovskii, and Vl. V. Kocharovskii, Sov. Phys. Usp. 32, 835 (1989).CrossRefGoogle Scholar
  13. 13.
    A. L. Buchachenko, V. L. Berdinskii, and A. D. Pershin, Teor. Eksp. Khim. 12, 666 (1976).Google Scholar
  14. 14.
    A. L. Buchachenko and V. L. Berdinskii, Russ. Chem. Rev. 52, 1 (1983).CrossRefGoogle Scholar
  15. 15.
    A. L. Buchachenko, Chemical Polarization of Electrons and Nuclei (Nauka, Moscow, 1974) [in Russian].Google Scholar
  16. 16.
    A. L. Buchachenko, R. Z. Sagdeev, and K. M. Salikhov, in Magnetic and Spin Effects in Chemical Reactions (Nauka, Novosibirsk, 1978), p. 56 [in Russian].Google Scholar
  17. 17.
    I. E. Dzyaloshinskii, Sov. Phys. JETP 5, 1259 (1957).Google Scholar
  18. 18.
    A. S. Borovik-Romanov, Lectures on Low Temperature Magnetism (Nauka, Novosibirsk, 1976), p. 58 [in Russian].Google Scholar
  19. 19.
    A. Carrington and A. D. McLachlan, Introduction to Magnetic Resonance with Application to Chemistry and Chemical Physics (Harper Row, New York, 1967), p.147.Google Scholar
  20. 20.
    A. I. Aleksandrov, I. A. Aleksandrov, and A. I. Prokof’ev, JETP Lett. 97, 546 (2013).CrossRefGoogle Scholar
  21. 21.
    A. I. Aleksandrov, I. A. Aleksandrov, and A. I. Prokof’ev, Dokl. Phys. Chem. 451, 147 (2013).CrossRefGoogle Scholar
  22. 22.
    C. P. Bean, Y. D. Livingston, and D. S. Roclbell, Acta Metall. 5, 682 (1957).CrossRefGoogle Scholar
  23. 23.
    Ya. S. Lebedev, A. A. Dubinskii, A. I. Aleksandrov, et al., J. Chem. Soc. Faraday Trans 92, 1959 (1996).CrossRefGoogle Scholar
  24. 24.
    G. M. Zhidomirov, Ya. S. Lebedev, and S. N. Dobryakov, Interpretation of Complex EPR Spectra (Nauka, Moscow, 1975), p. 61 [in Russian].Google Scholar
  25. 25.
    A. I. Aleksndrov, Yu. A. Borisov, and S. N. Dobryakov, Dokl. Phys. Chem. 376, 5 (2001).CrossRefGoogle Scholar
  26. 26.
    S. N. Dobryakov, A. K. Mamatkulova, and N. N. Baranova, Khim. Fiz. 16 (5), 76 (1997).Google Scholar
  27. 27.
    E. L. Nagaev, Magnetics with Complex Exchange Interaction (Nauka, Moscow, 1988) [in Russian].Google Scholar
  28. 28.
    Yu. N. Venevtsev, V. V. Gagulin, and V. N. Lyubimova, Ferroelectromagnets (Nauka, Moscow, 1993), p. 143 [in Russian].Google Scholar
  29. 29.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, et al., Gaussian 98, Rev. A.5 (Gaussian Inc., Pittsburgh PA, 1998).Google Scholar
  30. 30.
    E. A. Turov and V. V. Nikolaev, Phys. Usp. 48, 431 (2005).CrossRefGoogle Scholar
  31. 31.
    R. B. Morgunov, Phys. Usp. 47, 125 (2004).CrossRefGoogle Scholar
  32. 32.
    Z. I. Al’shits, E. V. Darinskaya, M. V. Koldaeva, and E. A. Petrzhik, JETP Lett. 88, 428 (2008).CrossRefGoogle Scholar
  33. 33.
    A. L. Buchachenko, Phys. Usp. 57, 92 (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. I. Aleksandrov
    • 1
  • I. A. Aleksandrov
    • 1
  • S. B. Zezin
    • 2
  • E. N. Degtyarev
    • 3
  • A. A. Dubinskiy
    • 3
  • S. S. Abramchuk
    • 4
  • A. I. Prokof’ev
    • 4
  1. 1.Enikolopov Institute of Synthetic Polymer MaterialsRussian Academy of SciencesMoscowRussia
  2. 2.Moscow State UniversityMoscowRussia
  3. 3.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  4. 4.Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia

Personalised recommendations