Russian Journal of Physical Chemistry B

, Volume 9, Issue 6, pp 946–951 | Cite as

Toxic effects of anticancer drug doxorubicin to bovine serum albumin evaluated by spectroscopic methods

  • Aiping Xi
  • Zhongxin Xu
  • Fengli Liu
  • Yanli Xu
  • Lijun Yu
  • Jie Liu
Chemical Physics of Biological Processes


The aim of this present work is to investigate the interaction between doxorubicin and bovine serum albumin (BSA) in simulated physiological conditions by spectroscopic methods to reveal potential toxic effects of the drug. The results reflected that doxorubicin made the fluorescence quenching of BSA through a static quenching procedure. The binding constants at 293, 298, and 303 K were obtained as 2.53 × 105, 8.13 × 104, and 3.59 × 104 M–1, respectively. There may be one binding site of doxorubicin on BSA. The thermodynamic parameters indicated that the interaction between doxorubicin and BSA was driven mainly by hydrogen bonding and electrostatic forces. Synchronous fluorescence spectra and circular dichroism (CD) results showed doxorubicin binding slightly changed the conformation of BSA with secondary structural content changes. Förster resonance energy transfer (FRET) study revealed high possibility of energy transfer with doxorubicin-Trp-212 distance of 3.48 nm. The results of the present study may provide valuable information for studying the distribution, toxicological and pharmacological mechanisms of doxorubicin in vivo.


serum albumin doxorubicin fluorescence circular dichroism UV-Vis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Charbonneau, M. Beauregard, and H. A. Tajmir-Riahi, J. Phys. Chem. B 113, 1777 (2009).CrossRefGoogle Scholar
  2. 2.
    D. M. Charbonneau and H. A. TajmirRiahi, J. Phys. Chem. B 114, 1148 (2010).CrossRefGoogle Scholar
  3. 3.
    X. X. Cheng, Y. Lui, B. Zhou, X. H. Xiao, and Y. Liu, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 72, 922 (2009).CrossRefGoogle Scholar
  4. 4.
    X. C. Zhao and R. T. Liu, Environ. Int. 40, 244 (2012).CrossRefGoogle Scholar
  5. 5.
    R. Beauchemin, C. N. N’SoukpoeKossi, T. J. Thomas, T. Thomas, R. Carpentier, et al., Biomacromolecules 8, 3177 (2007).CrossRefGoogle Scholar
  6. 6.
    Z. Cheng, J. Pharmaceut. Biomed. Anal. 66, 240 (2012).Google Scholar
  7. 7.
    C. Tan, H. Tasaka, K. P. Yu, M. L. Murphy, and D. A. Karnofsky, Cancer 20, 333 (1967).CrossRefGoogle Scholar
  8. 8.
    A. Dimarco, M. Gaetani, and B. Scarpina, Cancer Chemother. Rep. Pt. 1 53, 33 (1969).Google Scholar
  9. 9.
    A. Varlan, S. Ionescu, and M. Hillebrand, Lumines-cence 26, 710 (2011).CrossRefGoogle Scholar
  10. 10.
    X. Zhao, F. Sheng, J. Zheng, and R. Liu, J. Agricult. Food Chem. 59, 7902 (2011).CrossRefGoogle Scholar
  11. 11.
    A. B. Khan, J. M. Khan, M. S. Ali, R. H. Khan, and K.U. Din, Colloids Surf., B 87, 447 (2011).CrossRefGoogle Scholar
  12. 12.
    F. Xu, L. Zhang, L. He, W. Gu, F. Fang, et al., Acta Chim. Sin. 69, 2228 (2011).Google Scholar
  13. 13.
    A. Bolli, M. Marino, G. Rimbach, G. Fanali, M. Fasano, et al., Biochem. Biophys. Res. Commun. 398, 444 (2010).CrossRefGoogle Scholar
  14. 14.
    B. H. M. Hussein, J. Luminesc. 131, 900 (2011).Google Scholar
  15. 15.
    J. S. Mandeville and H. A. TajmirRiahi, Biomacro-molecules 11, 465 (2010).CrossRefGoogle Scholar
  16. 16.
    D. W. Lu, X. C. Zhao, Y. C. Zhao, B. C. Zhang, B. Zhang, et al., Food Chem. Toxicol. 49, 3158 (2011).CrossRefGoogle Scholar
  17. 17.
    H. Bian, M. Li, Q. Yu, Z. Chen, J. Tian, et al., Int. J. Biol. Macromol. 39, 291 (2006).CrossRefGoogle Scholar
  18. 18.
    Y. J. Hu, Y. Liu, and X. H. Xiao, Biomacromolecules 10, 517 (2009).CrossRefGoogle Scholar
  19. 19.
    X. Zhao, R. Liu, Y. Teng, and X. Liu, Sci. Total Envi-ron. 409, 892 (2011).CrossRefGoogle Scholar
  20. 20.
    C. N. Yan, H. X. Zhang, P. Mei, and Y. Liu, Chin. J. Chem. 23, 1151 (2005).CrossRefGoogle Scholar
  21. 21.
    R. Subramanyam, A. Gollapudi, P. Bonigala, M. Chin-naboina, and D. G. Amooru, J. Photochem. Photo-biol., B 94, 8 (2009).Google Scholar
  22. 22.
    J. N. Tian, J. Q. Liu, W. Y. He, Z. D. Hu, X. J. Yao, et al., Biomacromolecules 5, 1956 (2004).CrossRefGoogle Scholar
  23. 23.
    J. N. Tian, J. Q. Liu, Z. Hu, and X. G. Chen, Bioorg. Med. Chem. 13, 4124 (2005).CrossRefGoogle Scholar
  24. 24.
    S. M. T. Shaikh, J. Seetharamappa, P. B. Kandagal, D. H. Manjunatha, and S. Ashoka, Dyes Pigments 74, 665 (2007).CrossRefGoogle Scholar
  25. 25.
    X. C. Zhao, R. T. Liu, Z. X. Chi, Y. Teng, and P. F. Qin, J. Phys. Chem. B 114, 5625 (2010).CrossRefGoogle Scholar
  26. 26.
    N. Abdollahpour, A. Asoodeh, M. R. Saberi, and J. Chamani, J. Luminesc. 131, 1885 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • Aiping Xi
    • 1
  • Zhongxin Xu
    • 2
  • Fengli Liu
    • 2
  • Yanli Xu
    • 2
    • 4
  • Lijun Yu
    • 3
    • 4
  • Jie Liu
    • 4
  1. 1.Hebei University of Engineering Affiliated HospitalHandanPeople’s Republic of China
  2. 2.College of Medicine, Hebei University of EngineeringHandanPeople’s Republic of China
  3. 3.Department of Histology and EmbryologyDalian Medical UniversityDalianPeople’s Republic of China
  4. 4.Department of LaboratoryThe Military General Hospital of Beijing People’s Liberation ArmyBeijingPeople’s Republic of China

Personalised recommendations