Russian Journal of Physical Chemistry B

, Volume 9, Issue 2, pp 250–254 | Cite as

Promotion of the high-temperature autoignition of hydrogen-air and methane-air mixtures by normal alkanes

  • V. Ya. Basevich
  • S. N. Medvedev
  • F. S. Frolov
  • S. M. Frolov
Combustion, Explosion, and Shock Waves
  • 37 Downloads

Abstract

Numerical simulations are performed to examine the effect of small additives of heavy hydrocarbons on the high-temperature autoignition of homogeneous hydrogen-air and methane-air mixtures. The kinetic calculations are carried out using a previously developed detailed mechanism of the oxidation and combustion of normal alkanes. It is shown that the behavior of hydrogen-hydrocarbon-air ternary mixtures is ambiguous. Large hydrocarbon additives of n-heptane and n-hexadecane to a hydrogen-air mixture promote its autoignition at low temperatures and inhibits it at high temperatures, whereas in a definite high-temperature range, small additives of hydrocarbons can promote rather than inhibit the autoignition. The autoignition of methane-air mixtures is promoted by additives of heavy hydrocarbons in all cases.

Keywords

kinetic modeling autoignition hydrogen-hydrocarbon-air and methane-hydrocarbon-air ternary mixtures promotion inhibition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Verhelst and T. Wallner, Prog. Energy Combust. Sci. 35, 490 (2009).CrossRefGoogle Scholar
  2. 2.
    Y. Zhanga, J. Wu, and S. Ishizuka, Int. J. Hydrogen Energy 34, 519 (2009).CrossRefGoogle Scholar
  3. 3.
    R. K. Cheng, D. Littlejohn, P. A. Strakey, and T. Sindell, Proc. Combust. Inst. 32, 3001 (2009).CrossRefGoogle Scholar
  4. 4.
    S. M. Frolov, S. N. Medvedev, V. Ya. Basevich, and F. S. Frolov, Int. J. Hydrogen Energy 38, 4177 (2013).CrossRefGoogle Scholar
  5. 5.
    S. M. Frolov, S. N. Medvedev, V. Ya. Basevich, and F. S. Frolov, Russ. J. Phys. Chem. B 32, 457 (2013).CrossRefGoogle Scholar
  6. 6.
    V. Ya. Basevich, S. N. Medvedev, F. S. Frolov, and S. M. Frolov, in Combustion and Explosion, Ed. by S. M. Frolov (Torus Press, Moscow, 2014), No. 7, p. 14 [in Russian].Google Scholar
  7. 7.
    V. Ya. Basevich, A. A. Belyaev, V. S. Posvyanskii, and S. M. Frolov, Russ. J. Phys. Chem. B 29, 985 (2010).CrossRefGoogle Scholar
  8. 8.
    V. Ya. Basevich, A. A. Belyaev, V. S. Posvyanskii, and S. M. Frolov, Russ. J. Phys. Chem. B 32, 161 (2013).CrossRefGoogle Scholar
  9. 9.
    B. V. Lidskii, M. G. Neigauz, V. Ya. Basevich, and S. M. Frolov, Khim. Fiz. 22(3), 51 (2003).Google Scholar
  10. 10.
    N. N. Semenov, Chain Reactions (Nauka, Moscow, 1986) [in Russian].Google Scholar
  11. 11.
    A. A. Borisov, G. I. Skachkov, and K. Ya. Troshin, in Advanced Computation and Analysis of Combustion, Ed. by G. D. Roy, S. M. Frolov, and P. Givi (ENAS, Moscow, 1997), p. 79.Google Scholar
  12. 12.
    K. Ya. Troshin, Doctoral Dissertation in Mathematics and Physics (IKhF RAN, Moscow, 2008).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • V. Ya. Basevich
    • 1
  • S. N. Medvedev
    • 1
  • F. S. Frolov
    • 1
  • S. M. Frolov
    • 1
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations