Russian Journal of Physical Chemistry B

, Volume 9, Issue 1, pp 127–131 | Cite as

Kinetic study and simulation of methyl linoleate oxidation in micelles

  • E. M. Pliss
  • D. V. Loshadkin
  • A. M. Grobov
  • T. S. Kuznetsova
  • A. I. Rusakov
Chemical Physics of Biological Processes

Abstract

The results of experiments and computer simulations on the radical-chain oxidation of methyl linoleate in micelles are reported. The reaction rate constants included in the developed mathematical model are estimated. The ratio of the rates of first-order and bimolecular chain termination is examined. It is demonstrated that the rate constant of bimolecular chain termination in micelles is lower than that in the homogeneous phase.

Keywords

methyl linoleate micelle Triton X-100 Kinetics-2012 computer simulation biological oxygen monitor chain oxidation ratio of first-order and bimolecular chain termination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Roginsky, Arch. Biochem. Biophys. 414, 261 (2003).CrossRefGoogle Scholar
  2. 2.
    V. A. Roginskii, Kinet. Catal. 37, 488 (1996).Google Scholar
  3. 3.
    D. Pratt, K. Tallman, and N. Porter, Acc. Chem. Res. 44, 458 (2011).CrossRefGoogle Scholar
  4. 4.
    V. A. Roginskii and I. V. Utkin, Kinet. Katal. 32, 814 (1991).Google Scholar
  5. 5.
    L. R. S. Barclay and M. R. Vinquist, in The Chemistry of Phenols, Ed. by Z. Rappoport (Wiley, New York, 2003), p. 839.Google Scholar
  6. 6.
    A. V. Sokolov, S. V. Popov, E. M. Pliss, and D. V. Loshadkin, Official Bulletin of Federal Service for Intellectual Property, “Computer Programs. Databases. Topographies of Integrated Circuits”, No. 3 (2013).Google Scholar
  7. 7.
    W. W. Umbreit, J. A. Bain, R. H. Burris, M. J. Johnson, and J. F. Stauffer, Manometric Techniques: a Manual Describing Methods Applicable to the Study of Tissue Metabolism (Minn. Burgess, Minneapolis, 1966), p. 305.Google Scholar
  8. 8.
    V. Roginsky and T. Barsukova, Chem. Phys. Lipids 111, 87 (2001).CrossRefGoogle Scholar
  9. 9.
    N. A. Porter, L. S. Lehman, B. A. Weber, and K. J. Smith, J. Am. Chem. Soc. 101, 6447 (1981).CrossRefGoogle Scholar
  10. 10.
    H. W. S. Chan and G. Lewett, Lipids, No. 12, 99 (1977).Google Scholar
  11. 11.
    N. A. Porter and D. G. Wuiek, J. Am. Chem. Soc. 106, 2626 (1984).CrossRefGoogle Scholar
  12. 12.
    NIST Standard Referenct Database 17, NIST Chemical Kinetics Database, Vers. 6.0 (Giathersburg, 1994).Google Scholar
  13. 13.
    L. R. C. Barclay, S. J. Locke, J. M. MacNeil, and J. van Kessel, Can. J. Chem. 63, 2633 (1985).CrossRefGoogle Scholar
  14. 14.
    S. Benson, Thermochemical Kinetics (Wiley, New York, 1968).Google Scholar
  15. 15.
    E. T. Denisov and I. B. Afanas’ev, Oxidation and Antioxidants in Organic Chemistry and Biology (CRC Press, Boca Raton, London, New York, Singapore, 2005), p. 331.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • E. M. Pliss
    • 1
  • D. V. Loshadkin
    • 2
  • A. M. Grobov
    • 1
  • T. S. Kuznetsova
    • 1
  • A. I. Rusakov
    • 1
  1. 1.Demidov Yaroslavl State UniversityYaroslavlRussia
  2. 2.Yaroslavl State Technical UniversityYaroslavlRussia

Personalised recommendations