Advertisement

Russian Journal of Physical Chemistry B

, Volume 9, Issue 1, pp 62–68 | Cite as

Irregular and cellular wave structures in the combustion of porous media under conditions of natural gas infiltration

  • S. V. Kostin
  • P. M. Krishenik
  • K. G. Shkadinsky
Combustion, Explosion, and Shock Waves

Abstract

The experimental results on the unsteady propagation of cellular waves during the infiltration-controlled combustion of a titanium powder layer are presented. The modes of frontal combustion of a porous medium with a nonuniform thermal structure that arise because of the loss of stability of the front under conditions of controlled gas transport into the exothermic reaction zone are examined. The conditions of transformation of an irregular combustion front into a cellular combustion wave are determined. The effects of the key thermal parameters of the heterogeneous system on the structure of the irregular and cellular fronts and on the characteristics of the oscillatory dynamics of their propagation are examined.

Keywords

infiltration combustion cellular modes stability of the wave fingering instability irregular structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. Zik, Z. Olami, and E. Mozes, Phys. Rev. Lett. 81, 3868 (1998).CrossRefGoogle Scholar
  2. 2.
    L. Kagan and Pattern G. Sivashinsky, Combust. Theory Model. 12, 269 (2008).CrossRefGoogle Scholar
  3. 3.
    B. Matkovwsky, Combust. Sci. Technol., No. 2, 269 (1998).Google Scholar
  4. 4.
    A. P. Aldushin and B. Sh. Braverman, Russ. J. Phys. Chem. B 4, 788 (2010).CrossRefGoogle Scholar
  5. 5.
    P. G. Saffman and G. I. Taylor, Proc. Roy. Soc. London A 245, 312 (1958).CrossRefGoogle Scholar
  6. 6.
    N. I. Ozerkovskaya, A. N. Firsov, and K. G. Shkadinskii, Combust. Explos., Shock Waves 46, 515 (2010).CrossRefGoogle Scholar
  7. 7.
    A. N. Firsov, N. I. Ozerkovskaya, and K. G. Shkadinskii, Combust. Explos., Shock Waves 46, 371 (2010).CrossRefGoogle Scholar
  8. 8.
    K. G. Shkadinskii, N. I. Ozerkovskaya, and A. N. Firsov, Russ. J. Phys. Chem. B 6, 42 (2012).CrossRefGoogle Scholar
  9. 9.
    S. V. Kostin and K. G. Shkadinskii, Dokl. Phys. 55, 533 (2010).CrossRefGoogle Scholar
  10. 10.
    S. V. Kostin, P. M. Krishenik, N. I. Ozerkovskaya, A. N. Firsov, and K. G. Shkadinskii, Combust. Explos., Shock Waves 48, 1 (2012).CrossRefGoogle Scholar
  11. 11.
    S. V. Kostin, P. M. Krishenik, and K. G. Shkadinsky, Int. J. Self-Propagat. High-Temp. Synth. 20(4), 43 (2011).Google Scholar
  12. 12.
    S. Charatian, E. Agababian, and A. G. Merzhanov, Arch. Combust. 5, 3 (1985).Google Scholar
  13. 13.
    A. S. Mukas’yan, V. A. Shugaev, and N. V. Kir’yakov, Arch. Combust. 29(1), 9 (1993).Google Scholar
  14. 14.
    S. V. Kostin and V. V. Barzykin, Arch. Combust. 37(3), 58 (2001).Google Scholar
  15. 15.
    M. D. Banov, Yu. V. Kazakov, and M. G. Kozulin, Welding and Cutting Materials (Akademiya, Moscow, 2000) [in Russian].Google Scholar
  16. 16.
    V. A. Vasil’ev, Physicochemical Principles of Foundry (Mosk. Gos. Tekh. Univ., Moscow, 1994) [in Russian].Google Scholar
  17. 17.
    I. E. Petrunin, Physicochemical Processes Accompanying Soldering and Brazing (Vyssh. shkola, Moscow, 1972) [in Russian].Google Scholar
  18. 18.
    Technology of Electric Fusion Welding of Metals and Alloys, Ed. by B. E. Paton (Mashinostroenie, Moscow, 1974) [in Russian].Google Scholar
  19. 19.
    A. P. Brovko and I. N. Bekman, Izv. Akad. Nauk SSSR, Metally, No. 1, 1 (1982).Google Scholar
  20. 20.
    L. G. Loitsyanskii, Mechanics of Liquids and Gases, International Series of Monographs in Aeronautics and Astronautics, Vol. 6 (Nauka, Moscow, 1978; Pergamon, Oxford, 1966).Google Scholar
  21. 21.
    D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics (Nauka, Moscow, 1987) [in Russian].Google Scholar
  22. 22.
    Short Manual of Physicochemical Values, Ed. by A. A. Ravdel’ and A. M. Ponomareva (Ivan Fedorov, St.-Petersburg, 2003), p. 117 [in Russian].Google Scholar
  23. 23.
    M. V. Tsarev, V. V. Mokrushin, A. V. Sten’gach, et al., Russ. J. Phys. Chem. A 84, 679 (2010).CrossRefGoogle Scholar
  24. 24.
    S. L. Kharatyan, E. V. Agababyan, and A. G. Merzhanov, Arch. Combust. 5(1), 3 (1985).Google Scholar
  25. 25.
    P. M. Krishenik, S. A. Rogachev, and K. G. Shkadinskii, Russ. J. Phys. Chem. B 8, 172 (2014).CrossRefGoogle Scholar
  26. 26.
    A. K. Filonenko, Fiz. Goreniya Vzryva 27(6), 41 (1991).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • S. V. Kostin
    • 1
  • P. M. Krishenik
    • 2
  • K. G. Shkadinsky
    • 1
    • 2
  1. 1.Institute of Structural Macrokinetics and MaterialsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  2. 2.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations