Russian Journal of Physical Chemistry B

, Volume 8, Issue 6, pp 881–887 | Cite as

Hole transport and bimolecular recombination of charge carriers in polystyrene molecularly doped with 6 wt % tritolylamine

  • A. P. Tyutnev
  • A. V. Nikerov
  • V. S. Saenko
  • E. D. Pozhidaev
Chemical Physics of Polymer Materials
  • 26 Downloads

Abstract

The general problems of hole transport and bimolecular recombination of charge carriers in molecularly doped polystyrene with an ultimately low dopant concentration (6 wt %) were considered. The experimental studies were performed by the radiation-induced time-of-flight method with bulk generation of charge carriers. The transient current curves were calculated using the multiple trapping model. Good agreement between the calculated and experimental curves of the transient current was achieved. The hole transport in the molecularly doped polymer was shown to be nonequilibrium. The bimolecular recombination was close to Langevin recombination when interpreted using the multiple trapping model.

Keywords

nonequilibrium hopping transport energy disorder multiple trapping model bulk and geminate recombination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. P. Tyutnev, V. S. Saenko, E. D. Pozhidaev, and N. S. Kostyukov, Dielectric Properties of Polymers in Ionizing Radiation Fields (Nauka, Moscow, 2005) [in Russian].Google Scholar
  2. 2.
    H. Bässler and A. Köhler, Top. Curr. Chem. 312, 1 (2012).CrossRefGoogle Scholar
  3. 3.
    A. P. Tyutnev, R. Sh. Ikhsanov, A. E. Abrameshin, and E. D. Pozhidaev, Polymer Sci., Ser. A 55, 192 (2013).CrossRefGoogle Scholar
  4. 4.
    P. M. Borsenberger and D. S. Weiss, Organic Photoreceptors for Xerography (Marcel Dekker, New York, 1998).Google Scholar
  5. 5.
    P. M. Borsenberger and H. Bässler, J. Chem. Phys. 95, 5327 (1991).CrossRefGoogle Scholar
  6. 6.
    H. Bässler, Phys. Status Solidi B 109, 9 (1981).CrossRefGoogle Scholar
  7. 7.
    H. Bässler, Phys. Status Solidi B 175, 15 (1993).CrossRefGoogle Scholar
  8. 8.
    A. P. Tyutnev, V. S. Saenko, and E. D. Pozhidaev, Chem. Phys. 389, 75 (2011).CrossRefGoogle Scholar
  9. 9.
    A. P. Tyutnev, R. Sh. Ikhsanov, V. S. Saenko, and E. D. Pozhidaev, Chem. Phys. 404, 88 (2012).CrossRefGoogle Scholar
  10. 10.
    L. B. Schein, V. S. Saenko, E. D. Pozhidaev, A. P. Tyutnev, and D. S. Weiss, J. Phys. Chem. C 113, 1067 (2009).CrossRefGoogle Scholar
  11. 11.
    P. M. Borsenberger, W. T. Gruenbaum, E. H. Magin, and L. J. Sorriero, Chem. Phys. 195, 435 (1995).CrossRefGoogle Scholar
  12. 12.
    R. H. Young, J. Chem. Phys. 103, 6749 (1995).CrossRefGoogle Scholar
  13. 13.
    A. P. Tyutnev, R. Sh. Ikhsanov, E. P. Grach, et al., Polymer Sci., Ser. A 55, 127 (2013).CrossRefGoogle Scholar
  14. 14.
    A. P. Tyutnev, V. S. Saenko, V. A. Kolesnikov, and E. D. Pozhidaev, High Energy Chem. 40, 6 (2006).CrossRefGoogle Scholar
  15. 15.
    A. P. Tyutnev, V. S. Saenko, and E. D. Pozhidaev, Chem. Phys. 415, 133 (2013).CrossRefGoogle Scholar
  16. 16.
    A. P. Tyutnev, A. V. Nikerov, and V. S. Saenko, A.E. Abrameshin, Polymer Sci., Ser. A 56, 719 (2014).CrossRefGoogle Scholar
  17. 17.
    S. V. Novikov, D. H. Dunlap, V. M. Kenkre, P. E. Parris, and A. V. Vannikov, Phys. Rev. Lett. 81, 4472 (1998).CrossRefGoogle Scholar
  18. 18.
    S. V. Novikov, Russ. J. Electrochem. 38, 165 (2002).CrossRefGoogle Scholar
  19. 19.
    A. P. Tyutnev, R. Sh. Ikhsanov, V. S. Saenko, and E. D. Pozhidaev, J. Phys.: Condens. Matter 23, 325105 (2011).Google Scholar
  20. 20.
    D. H. Dunlap, L. B. Schein, A. P. Tyutnev, V. S. Saenko, E. D. Pozhidaev, et al., J. Phys. Chem. C 114, 9076 (2010).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • A. P. Tyutnev
    • 1
  • A. V. Nikerov
    • 1
  • V. S. Saenko
    • 1
  • E. D. Pozhidaev
    • 1
  1. 1.National Research University “Higher School of Economics”MoscowRussia

Personalised recommendations