Advertisement

Russian Journal of Physical Chemistry B

, Volume 8, Issue 5, pp 651–656 | Cite as

Numerical simulation of catalytic combustion of methane using washcoat model and external model: a comparison study

  • Yang Du
  • Pei Wen Wang
  • Wei Dong Shen
  • Jia Feng Xu
Kinetics and Mechanism of Chemical Reactions. Catalysis
  • 59 Downloads

Abstract

This paper presents a comparison study of numerical simulation of catalytic combustion of methane on Pt catalyst using two different physical models. The external surface model and the washcoat model were employed. The simulations were conducted in a two-dimensional monolith reactor with detail surface kinetics. The agreement of simulation results of the washcoat model with the measured data is good. However, in contrast to experimental data, the external surface method will produce a lower result of conversion of CH4 at low temperature due to the neglecting of the larger inner surface of the washcoat. Moreover, the effects of specific surface area and pore size of washcoat on reaction rate were discussed. It can be concluded that the washcoat model would provide a more realistic result and can enrich the contents of numerical simulation of catalytic reaction.

Keywords

washcoat catalytic combustion mass transfer porous media physical model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. W. Hwang, J. Y. Lee, D. H. Jo, H. W. Jung, and S. H. Kim, Korean J. Chem. Eng 28, 143 (2010).CrossRefGoogle Scholar
  2. 2.
    S. Su and J. Agnew, Fuel 85, 1201 (2006).CrossRefGoogle Scholar
  3. 3.
    M. Reinke, J. Mantzaras, R. Schaeren, R. Bombach, A. Inauen, and S. Schenker, Combust. Flame 136, 217 (2004).CrossRefGoogle Scholar
  4. 4.
    M. Irani, A. Alizadehdakhel, A. N. Pour, N. Hoseini, and M. Adinehnia, Int. J. Hydrogen. Energy 36, 15602 (2011).CrossRefGoogle Scholar
  5. 5.
    L. Shi, D. J. Bayless, and M. E. Prudich, Int. J. Hydrogen. Energy 34, 7666 (2009).CrossRefGoogle Scholar
  6. 6.
    R. Zapf, C. Becker-Willinger, K. Berresheim, et al., Chem. Eng. Res. Des. 81, 721 (2003).CrossRefGoogle Scholar
  7. 7.
    X. Zhai, S. Ding, Y. Cheng, Y. Jin, Y. Cheng, Int. J. Hydrogen. Energy 35, 5383 (2010).CrossRefGoogle Scholar
  8. 8.
    P. MarÍn, S. Ordóñez, and F. V. Díez, Chem. Eng. J. 147, 356 (2009).CrossRefGoogle Scholar
  9. 9.
    K. Everaert and J. Baeyens, J. Hazard. Mater. 109, 113 (2004).CrossRefGoogle Scholar
  10. 10.
    W. Guojiang and T. Song, Energ. Convers. Manage 46, 2010 (2005).CrossRefGoogle Scholar
  11. 11.
    A. Kumar and S. Mazumder, Comput. Chem. Eng. 34, 135 (2010).CrossRefGoogle Scholar
  12. 12.
    N. Mladenov, J. Koop, S. Tischer, and O. Deutschmann, Chem. Eng. Sci. 65, 812 (2010).CrossRefGoogle Scholar
  13. 13.
    V. V. Vlasenko, Russ. J. Phys. Chem. B 5, 800 (2011).CrossRefGoogle Scholar
  14. 14.
    B. S. Ermolaev, B. A. Khasainov, and K. A. Sleptsov, Russ. J. Phys. Chem. B 5, 1007 (2011).CrossRefGoogle Scholar
  15. 15.
    J. Chen, H. Yang, N. Wang, Z. Ring, and T. Dabros, Appl. Catal. A: Gen. 345, 1 (2008).CrossRefGoogle Scholar
  16. 16.
    A. Kumar and S. Mazumder, Comput. Chem. Eng. 32, 1482 (2008).CrossRefGoogle Scholar
  17. 17.
    R. Quiceno, J. Pérez-RamÍrez, J. Warnatz, and O. Deutschmann, Appl. Catal. A:Gen. 303, 166 (2006).CrossRefGoogle Scholar
  18. 18.
    F. Zhang, R. E. Hayes, and S. T. Kolaczkowski, Chem. Eng. Res. Des. 82, 481 (2004).CrossRefGoogle Scholar
  19. 19.
    O. Deutschmann, F. Behrendt, and J. Warnatz, Catal. Today 21, 461 (1994).CrossRefGoogle Scholar
  20. 20.
    S. T. Kolaczkowski, R. Chao, S. Awdry, and A. Smith, Chem. Eng. Res. Des. 85, 1539 (2007).CrossRefGoogle Scholar
  21. 21.
    C. P. Chou, J. Y. Chen, G. H. Evans, and W. S. Winters, Combust. Sci. Technol. 150, 27 (2000).CrossRefGoogle Scholar
  22. 22.
    G. Guan, K. Kusakabe, M. Taneda, M. Uehara, and H. Maeda, Chem. Eng. J. 144, 270 (2008).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • Yang Du
    • 1
  • Pei Wen Wang
    • 1
    • 2
  • Wei Dong Shen
    • 2
  • Jia Feng Xu
    • 1
    • 2
  1. 1.Department of Military Petroleum Supply EngineeringLogistical Engineering UniversityChongqingChina
  2. 2.Key Laboratory of Special Power Supply of PLAChongqing Communication InstituteChongqingChina

Personalised recommendations