Skip to main content
Log in

Numerical simulation of catalytic combustion of methane using washcoat model and external model: a comparison study

  • Kinetics and Mechanism of Chemical Reactions. Catalysis
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

This paper presents a comparison study of numerical simulation of catalytic combustion of methane on Pt catalyst using two different physical models. The external surface model and the washcoat model were employed. The simulations were conducted in a two-dimensional monolith reactor with detail surface kinetics. The agreement of simulation results of the washcoat model with the measured data is good. However, in contrast to experimental data, the external surface method will produce a lower result of conversion of CH4 at low temperature due to the neglecting of the larger inner surface of the washcoat. Moreover, the effects of specific surface area and pore size of washcoat on reaction rate were discussed. It can be concluded that the washcoat model would provide a more realistic result and can enrich the contents of numerical simulation of catalytic reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. W. Hwang, J. Y. Lee, D. H. Jo, H. W. Jung, and S. H. Kim, Korean J. Chem. Eng 28, 143 (2010).

    Article  Google Scholar 

  2. S. Su and J. Agnew, Fuel 85, 1201 (2006).

    Article  CAS  Google Scholar 

  3. M. Reinke, J. Mantzaras, R. Schaeren, R. Bombach, A. Inauen, and S. Schenker, Combust. Flame 136, 217 (2004).

    Article  CAS  Google Scholar 

  4. M. Irani, A. Alizadehdakhel, A. N. Pour, N. Hoseini, and M. Adinehnia, Int. J. Hydrogen. Energy 36, 15602 (2011).

    Article  CAS  Google Scholar 

  5. L. Shi, D. J. Bayless, and M. E. Prudich, Int. J. Hydrogen. Energy 34, 7666 (2009).

    Article  CAS  Google Scholar 

  6. R. Zapf, C. Becker-Willinger, K. Berresheim, et al., Chem. Eng. Res. Des. 81, 721 (2003).

    Article  CAS  Google Scholar 

  7. X. Zhai, S. Ding, Y. Cheng, Y. Jin, Y. Cheng, Int. J. Hydrogen. Energy 35, 5383 (2010).

    Article  CAS  Google Scholar 

  8. P. MarÍn, S. Ordóñez, and F. V. Díez, Chem. Eng. J. 147, 356 (2009).

    Article  Google Scholar 

  9. K. Everaert and J. Baeyens, J. Hazard. Mater. 109, 113 (2004).

    Article  CAS  Google Scholar 

  10. W. Guojiang and T. Song, Energ. Convers. Manage 46, 2010 (2005).

    Article  Google Scholar 

  11. A. Kumar and S. Mazumder, Comput. Chem. Eng. 34, 135 (2010).

    Article  CAS  Google Scholar 

  12. N. Mladenov, J. Koop, S. Tischer, and O. Deutschmann, Chem. Eng. Sci. 65, 812 (2010).

    Article  CAS  Google Scholar 

  13. V. V. Vlasenko, Russ. J. Phys. Chem. B 5, 800 (2011).

    Article  CAS  Google Scholar 

  14. B. S. Ermolaev, B. A. Khasainov, and K. A. Sleptsov, Russ. J. Phys. Chem. B 5, 1007 (2011).

    Article  CAS  Google Scholar 

  15. J. Chen, H. Yang, N. Wang, Z. Ring, and T. Dabros, Appl. Catal. A: Gen. 345, 1 (2008).

    Article  CAS  Google Scholar 

  16. A. Kumar and S. Mazumder, Comput. Chem. Eng. 32, 1482 (2008).

    Article  CAS  Google Scholar 

  17. R. Quiceno, J. Pérez-RamÍrez, J. Warnatz, and O. Deutschmann, Appl. Catal. A:Gen. 303, 166 (2006).

    Article  CAS  Google Scholar 

  18. F. Zhang, R. E. Hayes, and S. T. Kolaczkowski, Chem. Eng. Res. Des. 82, 481 (2004).

    Article  CAS  Google Scholar 

  19. O. Deutschmann, F. Behrendt, and J. Warnatz, Catal. Today 21, 461 (1994).

    Article  CAS  Google Scholar 

  20. S. T. Kolaczkowski, R. Chao, S. Awdry, and A. Smith, Chem. Eng. Res. Des. 85, 1539 (2007).

    Article  CAS  Google Scholar 

  21. C. P. Chou, J. Y. Chen, G. H. Evans, and W. S. Winters, Combust. Sci. Technol. 150, 27 (2000).

    Article  CAS  Google Scholar 

  22. G. Guan, K. Kusakabe, M. Taneda, M. Uehara, and H. Maeda, Chem. Eng. J. 144, 270 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Du.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Y., Wang, P.W., Shen, W.D. et al. Numerical simulation of catalytic combustion of methane using washcoat model and external model: a comparison study. Russ. J. Phys. Chem. B 8, 651–656 (2014). https://doi.org/10.1134/S1990793114050145

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793114050145

Keywords

Navigation