Advertisement

Russian Journal of Physical Chemistry B

, Volume 8, Issue 5, pp 680–686 | Cite as

Convective burning of an aluminum-water mixture

  • B. S. Ermolaev
  • V. E. Khrapovskii
  • V. M. Shmelev
Combustion, Explosion, and Shock Waves

Abstract

The burning of a stoichiometric mixture of aluminum (PAP-2 powder) with water in a constant-volume bomb is studied. It is shown that, depending on the charge diameter and igniter-generated pressure, three situations can arise: the mixture does not burn, burns slowly (in the layer-by-layer mode), or burns rapidly in the convective mode. The characteristics of the rapid burning, such as the effect of the igniter-generated burning, charge length, and initial charge density, are in general similar to those of the convective burning of mixtures of aluminum powder with an oxidizing agent (AP or PA), described in the literature. The difference lies in the fact that, due to a relatively low water activity as an oxidant, the convective burning of aluminum-water mixtures is harder to initiate, and it proceeds at a much lower velocity.

Keywords

aluminum burning hydrogen alumina convective burning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Ingenito and C. Bruno, J. Propuls. Power 20, 1056 (2004).CrossRefGoogle Scholar
  2. 2.
    E. Shafirovich, V. Diakov, and A. Varma, Combust. Flame 144, 415 (2006).CrossRefGoogle Scholar
  3. 3.
    T. D. Wood, M. A. Pfeil, T. L. Pourpoint, et al., in Proceedings of the 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit 2 (AIAA, Denver, 2009), p. 10.Google Scholar
  4. 4.
    T. L. Pourpoint, T. D. Wood, M. A. Pfeil, et al., Int. J. Aerospace Eng., Article ID 874076 (2012).Google Scholar
  5. 5.
    P. V. Komissarov, R. Kh. Ibragimov, G. N. Sokolov, and A. A. Borisov, in Combustion and Explosion, Collected Vol., Ed. by S. M. Frolov (Torus Press, Moscow, 2009), No. 2, p. 73 [in Russian].Google Scholar
  6. 6.
    V. M. Shmelev and S. V. Finyakov, in Combustion and Explosion, Collected Vol., Ed. by S. M. Frolov (Torus Press, Moscow, 2013), No. 6, 169 (2013).Google Scholar
  7. 7.
    V. E. Khrapovskii and V. G. Khudaverdiev, Russ. J. Phys. Chem. B 4, 53 (2010).CrossRefGoogle Scholar
  8. 8.
    V. E. Khrapovskii, V. G. Khudaverdiev, and A. A. Sulimov, in Combustion and Explosion, Collected Vol., Ed. by S. M. Frolov (Torus Press, Moscow, 2013), No. 6, p. 211 [in Russian].Google Scholar
  9. 9.
    A. Yu. Dolgoborodov, N. E. Safronov, V. A. Teselkin, et al., in Combustion and Explosion, Collected Vol., Ed. by S. M. Frolov (Torus Press, Moscow, 2013), No. 6, 302 (2013).Google Scholar
  10. 10.
    A. F. Belyaev, V. K. Bobolev, A. I. Korotkov, A. A. Sulimov, and S. V. Chuiko, Transition of Condensed System Combustion into Explosion (Nauka, Moscow, 1973) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • B. S. Ermolaev
    • 1
  • V. E. Khrapovskii
    • 1
  • V. M. Shmelev
    • 1
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations