Russian Journal of Physical Chemistry B

, Volume 8, Issue 3, pp 385–390 | Cite as

Denaturation of bovine serum albumin initiated by sodium dodecyl sulfate as monitored via the intrinsic fluorescence of the protein

  • I. M. Vlasova
  • V. V. Zhuravleva
  • A. M. Saletsky
Chemical Physics of Biological Processes

Abstract

The tryptophan fluorescence of bovine serum albumin (BSA) is used to study the denaturation transitions in BSA under the influence of sodium dodecyl sulfate (SDS) at various pH values. The stepwise quenching of BSA tryptophan fluorescence and the gradual increase in the degree of anisotropy of BSA tryptophan fluorescence with increasing SDS concentration in solutions indicate the stepwise nature of denaturation: the first stage is a loosening of protein globules, whereas the second is a complete unfolding of the protein amino acid chain. At pH > pI of BSA, the denaturation BSA proceeds through both stages. At pH > pI of BSA, the denaturation BSA runs poorly and stops after the first stage. A more efficient BSA denaturation under the action of SDS occurs at pH < pI of BSA, with the efficiency of BSA denaturation under the influence of SDS decreasing with increasing pH.

Keywords

tryptophan fluorescence bovine serum albumin sodium dodecyl sulfate ionic detergents protein denaturation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. A. Gryzunov and G. E. Dobretsov, Blood Serum Albumin in Clinical Medicine (IRIUS, Moscow, 1994) [in Russian].Google Scholar
  2. 2.
    L. A. Osterman, Methods of Protein and Nucleic Acid Research (MTsNMO, Moscow, 2002) [in Russian].Google Scholar
  3. 3.
    R. Dawson, D. Elliott, W. Elliott, and K. Jones, Data for Biochemical Research (Clarendon, Oxford, 1986).Google Scholar
  4. 4.
    R. B. Gennis, Biomembranes: Molecular Structure and Function (Springer, New York, 1989; Mir, Moscow, 1997).CrossRefGoogle Scholar
  5. 5.
    L. V. Levshin and A. M. Saletsky, Optical Methods of Investigation of Molecular Systems. I. Molecular Spectroscopy (Mosk. Gos. Univ., Moscow, 1994) [in Russian].Google Scholar
  6. 6.
    Yu. A. Vladimirov, Photochemistry and Luminescence of Proteins (Nauka, Moscow, 1965; Israel Program for Scientific Translations, Jerusalem, 1969).Google Scholar
  7. 7.
    E. A. Permyakov, The Method of Intrinsic Protein Luminescence (Nauka, Moscow, 2003) [in Russian].Google Scholar
  8. 8.
    A. P. Demchenko, Luminescence and Dynamics of Protein Structure (Nauk. Dumka, Kiev, 1988) [in Russian].Google Scholar
  9. 9.
    I. M. Vlasova and A. M. Saletsky, Russ. J. Phys. Chem. B 2, 298 (2008).CrossRefGoogle Scholar
  10. 10.
    I. M. Vlasova and A. M. Saletsky, Russ. J. Phys. Chem. B 3, 976 (2009).CrossRefGoogle Scholar
  11. 11.
    I. M. Vlasova and A. M. Saletsky, J. Appl. Spectrosc. 76, 536 (2009).CrossRefGoogle Scholar
  12. 12.
    I. M. Vlasova and A. M. Saletsky, Russ. J. Phys. Chem. B 5, 320 (2011).CrossRefGoogle Scholar
  13. 13.
    I. M. Vlasova, A. A. Vlasov, and A. M. Saletsky, J. Mol. Struct. 984, 332 (2010).CrossRefGoogle Scholar
  14. 14.
    I. M. Vlasova and A. M. Saletsky, Mosc. Univ. Phys. Bull. 66, 59 (2011).CrossRefGoogle Scholar
  15. 15.
    I. M. Vlasova, V. V. Zhuravleva, and A. M. Saletsky, Russ. J. Phys. Chem. A 86, 509 (2012).CrossRefGoogle Scholar
  16. 16.
    X. Diaz, E. Abuin, and E. Lissi, J. Photochem. Photobiol. A: Chem. 155, 157 (2003).Google Scholar
  17. 17.
    A. Brahma, C. Mandal, and D. Bhattacharyya, Biochim. Biophys. Acta 1751, 159 (2005).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • I. M. Vlasova
    • 1
  • V. V. Zhuravleva
    • 1
  • A. M. Saletsky
    • 1
  1. 1.Faculty of PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations