Advertisement

Russian Journal of Physical Chemistry B

, Volume 7, Issue 8, pp 932–937 | Cite as

SCF micronization of poly-3-hydroxybutyrate using supercritical antisolvent

  • L. I. Krotova
  • A. V. Mironov
  • V. K. Popov
Article

Abstract

Micronization of poly-3-hydroxybutyrate (PHB) by the supercritical fluid antisolvent precipitation (SAS) technique using supercritical carbon dioxide as an antisolvent was studied experimentally. The possibility of preparing particles of varying morphology (including hollow spheres) and specified size from 100 nm to 20 μm was demonstrated. The influence of different mechanisms of solid phase formation during SAS micronization on the size and morphology of PHB microparticles under different experimental conditions was considered.

Keywords

supercritical carbon dioxide biodegradable polymers SCF micronization poly-3-hydroxybutyrate SAS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Nadkar and C. Lokhande, Pharma Times 42, 17 (2010).Google Scholar
  2. 2.
    D. Chopra, M. Gulati, V. Saluja, P. Pathak, and P. Bansal, Recent Patents CNS Drug Discovery, No. 3, 216 (2008).Google Scholar
  3. 3.
    N. V. Majeti and R. Kumar, J. Pharm. Pharmaceut. Sci. 2, 234 (2000).Google Scholar
  4. 4.
    A. Shariati and C. J. Peters, Curr. Opin. Solid State Mater. Sci., No. 7, 371 (2003).Google Scholar
  5. 5.
    M. J. Cocero, A. Martin, F. Mattea, and S. Varona, Supercrit. Fluids, No. 47, 546 (2009).Google Scholar
  6. 6.
    M. Sokolsky-Papkov, K. Agashi, A. Olaye, K. Shakesheff, and A. J. Domb, Adv. Drug. Delivery Rev., No. 59, 187 (2007).Google Scholar
  7. 7.
    J. Bleich, B. W. Mueller, and W. Wassmus, Int. J. Pharm., No. 97, 111 (1993).Google Scholar
  8. 8.
    M. Sousa Costaa, A. R. C. Duarteb, M. M. Cardosoa, and C. M. M. Duarteb, Int. J. Pharmaceut., No. 328, 72 (2007).Google Scholar
  9. 9.
    E. Franceschi, A. M. de Cesaro, M. Feiten, S. R. S. Ferreira, C. Darivac, M. H. Kunita, A. F. Rubira, E. C. Muniz, M. L. Corazza, and J. V. Oliveira, J. Supercrit. Fluids, No. 47, 259 (2008).Google Scholar
  10. 10.
    E. Reverchon and I. Marcoa, Chem. Eng. J., No. 169, 358 (2011).Google Scholar
  11. 11.
    I. De Marco and E. Reverchon, J. Supercrit. Fluids, No. 58, 295 (2011).Google Scholar
  12. 12.
    I. De Marco and E. Torino, J. Supercrit. Fluids, No. 43, 126 (2007).Google Scholar
  13. 13.
    A. Martin and M. J. Cocero, Adv. Drug. Delivery Rev., 2, No. 60, 339.Google Scholar
  14. 14.
    V. L. Myshkina, E. A. Ivanov, D. A. Nikolaeva, T. K. Makhina, A. P. Bonartsev, E. V. Filatova, A. O. Ruzhitskii, and G. A. Bonartseva, Prikl. Biokhim. Mikrobiol. 46 (3), 315 (2010).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • L. I. Krotova
    • 1
  • A. V. Mironov
    • 1
  • V. K. Popov
    • 1
  1. 1.Institute of Laser and Information Technologies, TroitskMoscow oblastRussia

Personalised recommendations