Skip to main content
Log in

Comparative analysis of the v(OD) and 2v 3(H2O) spectral bands of H2O-D2O system under isobaric heating conditions

  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The results of an investigation of the influence of isobaric heating on distribution of hydrogen bonds in the H2O-D2O system on the basis of comparative complex analysis of the v(OD) and 2v 3(H2O) spectral bands are presented. In the case of analysis of the band assigned to the 2v 3(H2O) overtone, the possibilities of obtaining more detailed information on the influence of external factors on the formation of local water structure widen significantly. In particular, there are noticeable differences in the quality of the obtainable data for these bands, which are especially manifested in their low-frequency regions, which are determined by the presence of strong hydrogen bonds characteristic of H-bonded high order water n-mers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Y. E. Gorbaty and G. V. Bondarenko, Appl. Spectrosc. 53, 908, (1999).

    Article  CAS  Google Scholar 

  2. Yu. E. Gorbaty, Sverkhkrit. Fluidy Teor. Prakt. 2 (1), 40 (2007).

    Google Scholar 

  3. R. D. Oparin, in Problems of Solution Chemistry. Teoretical and Experimental Methods of Solution Chemistry (Prospekt, Moscow, 2011), p. 255 [in Russian].

    Google Scholar 

  4. R. Oparin, T. Tassaing, Y. Danten, and M. Besnard, J. Chem. Phys. 123, 224501 (2005).

    Article  CAS  Google Scholar 

  5. R. Oparin, T. Tassaing, Y. Danten, and M. Besnard, J. Chem. Phys. 120, 10691 (2004).

    Article  CAS  Google Scholar 

  6. R. D. Oparin and M. V. Fedotova, Russ. J. Gen. Chem. 77, 17 (2007).

    Article  CAS  Google Scholar 

  7. R. D. Oparin and M. V. Fedotova, Russ. J. Gen. Chem. 77, 1686 (2007).

    Article  CAS  Google Scholar 

  8. G. Herzberg, in Molecular Spectra and Molecular Structure: Infrared and Raman Spectra of Polyatomic Molecules (Van Nostrand, Princeton, 1956), Vol. 2, p. 273.

    Google Scholar 

  9. M. Buback, Zeitschr. Naturforsch. A 39, 399 (1984).

    Google Scholar 

  10. M. Buback, J. Schweer, and H. Tups, Zeitschr. Naturforsch. A 41, 505 (1986).

    Google Scholar 

  11. M. Buback, J. Schweer, and H. Tups, Zeitschr. Naturforsch. A 41, 512 (1986).

    Google Scholar 

  12. H. G. Kjaergaard, H. Wei, S. Lefebvre, T. Carrington, O. S. Mortensen, M. L. Sage, and B. R. Henry, J. Chem. Phys. 100, 6228 (1994).

    Article  CAS  Google Scholar 

  13. R. D. Oparin, Sverkhkrit. Fluidy Teor. Prakt. 7 (2), 38 (2012).

    Google Scholar 

  14. A. H. Narten, M. D. Danford, and H. A. Levy, ORNL-3997 (1966), pp. 1–67.

    Google Scholar 

  15. Y. E. Gorbaty and Y. N. Demianets, Chem. Phys. Lett. 100, 450 (1983).

    Article  CAS  Google Scholar 

  16. Z. S. Klemenkova, T. A. Novskova, and A. K. Lyashchenko, Russ. J. Phys. Chem. A 82, 571 (2008).

    CAS  Google Scholar 

  17. E. Stanley, J. Phys. A: Math. Gen. 12 (12), L329 (1979).

    Article  CAS  Google Scholar 

  18. E. Stanley and J. J. Teixeira, Chem. Phys. 73, 3404 (1980).

    Article  CAS  Google Scholar 

  19. E. Stanley, J. J. Teixeira, A. Geiger, and R. L. Blumberg, Physica A 106, 981 (1981).

    Article  Google Scholar 

  20. G. V. Bondarenko and Yu. E. Gorbaty, Dokl. Akad. Nauk SSSR 210 (1), 132 (1973).

    CAS  Google Scholar 

  21. P. R. Griffiths, in Laboratory Methods in Vibrational Spectroscopy (Wiley, Chichester, England, 1987), p. 121.

    Google Scholar 

  22. D. A. Sirotkin, Candidate's Dissertation in Chemistry (Moscow, 2004).

    Google Scholar 

  23. M. Iwamoto, J. Uozumi, and K. Nishinari, in Proceedings of the International NIR/NIT Conference (Akademiai Kiado, Budapest, Hungary, 1986), p. 3.

    Google Scholar 

  24. H. Maeda, Y. Ozaki, M. Tanaka, N. Hayashi, and T. Kojima, J. Near Infrared Spectrosc. 3, 191 (1995).

    Article  CAS  Google Scholar 

  25. V. H. Segtnan, S. Sasik, T. Isaksson, and Y. Ozaki, Anal. Chem. 73, 3153 (2001).

    Article  CAS  Google Scholar 

  26. I. Noda, Appl. Spectrosc. 44, 550 (1990).

    Article  CAS  Google Scholar 

  27. I. Noda, Appl. Spectrosc. 47, 1329 (1993).

    Article  CAS  Google Scholar 

  28. I. Noda, A. E. Dowrey, C. Marcott, G. M. Story, and Y. Ozaki, Appl. Spectrosc. 54 (7), 236A (2000).

    Article  CAS  Google Scholar 

  29. M. E. Wall, A. Rechtsteiner, and L. M. Rocha, in A Practical Approach to Microarray Data Analysis (Kluwer, Norwell, MA, 2003), p. 91.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. D. Oparin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oparin, R.D., Dyshin, A.A. & Kiselev, M.G. Comparative analysis of the v(OD) and 2v 3(H2O) spectral bands of H2O-D2O system under isobaric heating conditions. Russ. J. Phys. Chem. B 7, 863–879 (2013). https://doi.org/10.1134/S1990793113070129

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793113070129

Keywords

Navigation