Russian Journal of Physical Chemistry B

, Volume 7, Issue 7, pp 863–879 | Cite as

Comparative analysis of the v(OD) and 2v 3(H2O) spectral bands of H2O-D2O system under isobaric heating conditions

Article

Abstract

The results of an investigation of the influence of isobaric heating on distribution of hydrogen bonds in the H2O-D2O system on the basis of comparative complex analysis of the v(OD) and 2v 3(H2O) spectral bands are presented. In the case of analysis of the band assigned to the 2v 3(H2O) overtone, the possibilities of obtaining more detailed information on the influence of external factors on the formation of local water structure widen significantly. In particular, there are noticeable differences in the quality of the obtainable data for these bands, which are especially manifested in their low-frequency regions, which are determined by the presence of strong hydrogen bonds characteristic of H-bonded high order water n-mers.

Keywords

spectral analysis hydrogen bond fluid systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. E. Gorbaty and G. V. Bondarenko, Appl. Spectrosc. 53, 908, (1999).CrossRefGoogle Scholar
  2. 2.
    Yu. E. Gorbaty, Sverkhkrit. Fluidy Teor. Prakt. 2 (1), 40 (2007).Google Scholar
  3. 3.
    R. D. Oparin, in Problems of Solution Chemistry. Teoretical and Experimental Methods of Solution Chemistry (Prospekt, Moscow, 2011), p. 255 [in Russian].Google Scholar
  4. 4.
    R. Oparin, T. Tassaing, Y. Danten, and M. Besnard, J. Chem. Phys. 123, 224501 (2005).CrossRefGoogle Scholar
  5. 5.
    R. Oparin, T. Tassaing, Y. Danten, and M. Besnard, J. Chem. Phys. 120, 10691 (2004).CrossRefGoogle Scholar
  6. 6.
    R. D. Oparin and M. V. Fedotova, Russ. J. Gen. Chem. 77, 17 (2007).CrossRefGoogle Scholar
  7. 7.
    R. D. Oparin and M. V. Fedotova, Russ. J. Gen. Chem. 77, 1686 (2007).CrossRefGoogle Scholar
  8. 8.
    G. Herzberg, in Molecular Spectra and Molecular Structure: Infrared and Raman Spectra of Polyatomic Molecules (Van Nostrand, Princeton, 1956), Vol. 2, p. 273.Google Scholar
  9. 9.
    M. Buback, Zeitschr. Naturforsch. A 39, 399 (1984).Google Scholar
  10. 10.
    M. Buback, J. Schweer, and H. Tups, Zeitschr. Naturforsch. A 41, 505 (1986).Google Scholar
  11. 11.
    M. Buback, J. Schweer, and H. Tups, Zeitschr. Naturforsch. A 41, 512 (1986).Google Scholar
  12. 12.
    H. G. Kjaergaard, H. Wei, S. Lefebvre, T. Carrington, O. S. Mortensen, M. L. Sage, and B. R. Henry, J. Chem. Phys. 100, 6228 (1994).CrossRefGoogle Scholar
  13. 13.
    R. D. Oparin, Sverkhkrit. Fluidy Teor. Prakt. 7 (2), 38 (2012).Google Scholar
  14. 14.
    A. H. Narten, M. D. Danford, and H. A. Levy, ORNL-3997 (1966), pp. 1–67.Google Scholar
  15. 15.
    Y. E. Gorbaty and Y. N. Demianets, Chem. Phys. Lett. 100, 450 (1983).CrossRefGoogle Scholar
  16. 16.
    Z. S. Klemenkova, T. A. Novskova, and A. K. Lyashchenko, Russ. J. Phys. Chem. A 82, 571 (2008).Google Scholar
  17. 17.
    E. Stanley, J. Phys. A: Math. Gen. 12 (12), L329 (1979).CrossRefGoogle Scholar
  18. 18.
    E. Stanley and J. J. Teixeira, Chem. Phys. 73, 3404 (1980).CrossRefGoogle Scholar
  19. 19.
    E. Stanley, J. J. Teixeira, A. Geiger, and R. L. Blumberg, Physica A 106, 981 (1981).CrossRefGoogle Scholar
  20. 20.
    G. V. Bondarenko and Yu. E. Gorbaty, Dokl. Akad. Nauk SSSR 210 (1), 132 (1973).Google Scholar
  21. 21.
    P. R. Griffiths, in Laboratory Methods in Vibrational Spectroscopy (Wiley, Chichester, England, 1987), p. 121.Google Scholar
  22. 22.
    D. A. Sirotkin, Candidate's Dissertation in Chemistry (Moscow, 2004).Google Scholar
  23. 23.
    M. Iwamoto, J. Uozumi, and K. Nishinari, in Proceedings of the International NIR/NIT Conference (Akademiai Kiado, Budapest, Hungary, 1986), p. 3.Google Scholar
  24. 24.
    H. Maeda, Y. Ozaki, M. Tanaka, N. Hayashi, and T. Kojima, J. Near Infrared Spectrosc. 3, 191 (1995).CrossRefGoogle Scholar
  25. 25.
    V. H. Segtnan, S. Sasik, T. Isaksson, and Y. Ozaki, Anal. Chem. 73, 3153 (2001).CrossRefGoogle Scholar
  26. 26.
    I. Noda, Appl. Spectrosc. 44, 550 (1990).CrossRefGoogle Scholar
  27. 27.
    I. Noda, Appl. Spectrosc. 47, 1329 (1993).CrossRefGoogle Scholar
  28. 28.
    I. Noda, A. E. Dowrey, C. Marcott, G. M. Story, and Y. Ozaki, Appl. Spectrosc. 54 (7), 236A (2000).CrossRefGoogle Scholar
  29. 29.
    M. E. Wall, A. Rechtsteiner, and L. M. Rocha, in A Practical Approach to Microarray Data Analysis (Kluwer, Norwell, MA, 2003), p. 91.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Krestov Institute of Solution Chemistry of the Russian Academy of SciencesIvanovoRussia

Personalised recommendations