Russian Journal of Physical Chemistry B

, Volume 7, Issue 5, pp 562–567 | Cite as

Determination of the parameters of the rotational diffusion of complexes of serum albumins with Triton X-100 from analysis of tryptophan fluorescence

  • I. M. Vlasova
  • V. V. Zhuravleva
  • A. M. Saletsky
Chemical Physics of Biological Processes
  • 62 Downloads

Abstract

The rotational diffusion of complexes of human serum albumin (HSA) and bovine serum albumin (BSA) with neutral surfactant Triton X-100 is study by analyzing the polarized tryptophan fluorescence and its parameters are determined (rotational relaxation time, diffusion coefficient, effective radius). Similarities in the solubilization of both proteins are revealed: an effective solubilization BSA and HSA in solutions containing neutral surfactant Triton X-100 is achieved at concentration of the latter of 0.3 mM, slightly greater than its critical micelle concentration (0.25 mM), with the most significant effect taking place at pH 5.0, a value close to the isoelectric points of the proteins.

Keywords

tryptophan fluorescence human serum albumin bovine serum albumin solubilization rotational diffusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. A. Gryzunov and G. E. Dobretsov, Blood Serum Albumin in Clinical Medicine (IRIUS, Moscow, 1994) [in Russian].Google Scholar
  2. 2.
    L. A. Osterman, Methods of Protein and Nucleic Acid Research (MTsNMO, Moscow, 2002) [in Russian].Google Scholar
  3. 3.
    R. Dawson, D. Elliott, W. Elliott, and K. Jones, Data for Biochemical Research (Clarendon, Oxford, 1986).Google Scholar
  4. 4.
    R. B. Gennis, Biomembranes: Molecular Structure and Function (Springer, New York, 1989; Mir, Moscow, 1997).Google Scholar
  5. 5.
    L. V. Levshin and A. M. Saletsky, Optical Methods of Investigation of Molecular Systems. I. Molecular Spectroscopy (Mosk. Gos. Univ., Moscow, 1994) [in Russian].Google Scholar
  6. 6.
    Yu. A. Vladimirov, Photochemistry and Luminescence of Proteins (Nauka, Moscow, 1965; Israel Program for Scientific Translations, Jerusalem, 1969).Google Scholar
  7. 7.
    E. A. Permyakov, The Method of Intrinsic Protein Luminescence (Nauka, Moscow, 2003) [in Russian].Google Scholar
  8. 8.
    A. P. Demchenko, Luminescence and Dynamics of Protein Structure (Nauk. dumka, Kiev, 1988) [in Russian].Google Scholar
  9. 9.
    I. M. Vlasova and A. M. Saletsky, Russ. J. Phys. Chem. B 2, 298 (2008).CrossRefGoogle Scholar
  10. 10.
    I. M. Vlasova and A. M. Saletsky, Russ. J. Phys. Chem. B 3, 976 (2009).CrossRefGoogle Scholar
  11. 11.
    I. M. Vlasova and A. M. Saletsky, J. Appl. Spectrosc. 76, 536 (2009).CrossRefGoogle Scholar
  12. 12.
    I. M. Vlasova and A. M. Saletsky, Russ. J. Phys. Chem. B 5, 320 (2011).CrossRefGoogle Scholar
  13. 13.
    I. M. Vlasova, A. A. Vlasov, and A. M. Saletsky, J. Mol. Struct. 984, 332 (2010).CrossRefGoogle Scholar
  14. 14.
    X. Diaz, E. Abuin, and E. Lissi, J. Photochem. Photobiol. A: Chem. 155, 157 (2003).CrossRefGoogle Scholar
  15. 15.
    A. Brahma, C. Mandal, and D. Bhattacharyya, Biochim. Biophys. Acta 1751, 159 (2005).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • I. M. Vlasova
    • 1
  • V. V. Zhuravleva
    • 1
  • A. M. Saletsky
    • 1
  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations