Russian Journal of Physical Chemistry B

, Volume 7, Issue 3, pp 237–243 | Cite as

Specifics of the mechanochemical synthesis of titanium and tungsten carbides from various carbon components

Influence of External Factors on Physical and Chemical Transformations
  • 52 Downloads

Abstract

It is established that the main limiting factor in the implementation of mechanochemical synthesis in the Ti + C and WO3 + Mg + C systems is the degree of aromaticity of the carbon ingredient. The possibility of using carbon modifications produced by pyrolysis of plant raw materials for the synthesis of the respective carbides with a minimum sulfur content.

Keywords

renewable plant material pyrolysis mechanical activation mechanochemical synthesis titanium carbide tungsten carbide degree of aromaticity ash content in graphite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Yu. Butyagin, Russ. Chem. Rev. 63, 965 (1994).CrossRefGoogle Scholar
  2. 2.
    A. A. Popovich, V. P. Reva, and V. N. Vasilenko, Poroshk. Metall., No. 11, 22 (1992).Google Scholar
  3. 3.
    D. V. Onishchenko and V. P. Reva, Fiz. Khim. Obrab. Mater., No. 2, 71 (2011).Google Scholar
  4. 4.
    D. V. Onishchenko and V. P. Reva, Metallurg, No. 6, 63 (2012).Google Scholar
  5. 5.
    E. G. Avvakumov, Mechanical Methods of Activating Chemical Processes (Nauka, Novosibirsk, 1986) [in Russian].Google Scholar
  6. 6.
    S. S. Kiparisov, Yu. V. Levinskii, and A. P. Petrov, Titanium Carbide: Properties, Preparation, and Applications (Metallurgiya, Moscow, 1987), p. 216 [in Russian].Google Scholar
  7. 7.
    Polymer Encyclopedy (Sov. Entsiklopediya, Moscow, 1974), Vol. 2 [in Russian].Google Scholar
  8. 8.
    E. V. Shelekhov, O. N. Pripisnov, and S. I. Rupasov, Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall., No. 6, 66 (2001).Google Scholar
  9. 9.
    T. F. Grigor’eva, A. P. Barinova, and N. Z. Lyakhov, Russ. Chem. Rev. 70, 45 (2001).CrossRefGoogle Scholar
  10. 10.
    A. I. Gusev, Nanomateries, Nanostructures, Nanotechnologies (Nauka, Moscow, 2007) [in Russian].Google Scholar
  11. 11.
    Fundamentals of Mechanical Activation, Mechanosynthesis, and Mechanochemical Processing, Ed. by E. G. Avvakumov (Sib. Otdel. RAN, Novosibirsk, 2009) [in Russian].Google Scholar
  12. 12.
    S. F. Lomaeva, I. V. Povstugar, V. A. Volkov, A. N. Maratkanova, and E. P. Elsukov, Khim. Inter. Ustoich. Razvit., No. 6, 629 (2009).Google Scholar
  13. 13.
    A. A. Popovich, V. P. Reva, and V. N. Vasilenko, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., No. 5, 6 (1992).Google Scholar
  14. 14.
    D. V. Onishchenko, A. A. Popovich, and Shen Van Sin, Izv. Vyssh. Uchebn. Zaved., Poroshk. Metall. Funktsional. Pokryt., No. 2, 9 (2011).Google Scholar
  15. 15.
    D. V. Onishchenko and V. V. Chakov, Russ. J. Appl. Chem. 84, 1611 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Far-Eastern Federal UniversityVladivostokRussia

Personalised recommendations