Russian Journal of Physical Chemistry B

, Volume 7, Issue 1, pp 88–95 | Cite as

Closed model of oxygen recombination on an Al2O3 surface

  • A. A. Buchachenko
  • V. L. Kovalev
  • A. A. Krupnov
Reactions of Surface


On the basis of cluster-approximation quantum-chemical calculations of the interaction of an α-Al2O3 surface with oxygen, the rate coefficients for the elementary steps of the heterogeneous recombination of atomic oxygen are determined in the framework of the Eley-Rideal and Langmuir-Hinshelwood mechanisms. For the diffusion layer near the studied surface, these coefficients are used to calculate the probabilities of heterogeneous catalytic recombination, surface coverage, and heat flux to the surface at temperatures of 200–2000 K and pressures of 1000–7000 Pa. The results are compared to the results a solid-state periodic model, low-temperature plasma etching studies, and empirical models of recombination of atomic oxygen on a SiO2 surface.


thermal protection coatings catalytic activity heterogeneous recombination atomic oxygen 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. L. Kovalev, Heterogeneous Catalytic Processes in Aerothermodynamics (Fizmatlit, Moscow, 2002) [in Russian].Google Scholar
  2. 2.
    V. L. Kovalev and A. F. Kolesnikov, Izv. Akad. Nauk, Ser. Mekh. Zhidk. Gaza, No. 5, 3 (2005).Google Scholar
  3. 3.
    V. Yu. Kireev, B. S. Danilin, and V. I. Kuznetsov, Plasma Chemical and Ion Chemical Etching of Microstructures (Radio i svyaz’, Moscow, 1983) [in Russian].Google Scholar
  4. 4.
    M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (Wiley, New York, 1994).Google Scholar
  5. 5.
    T. Kurotaki, AIAA Paper No. 2000-2366.Google Scholar
  6. 6.
    O. Deutschmann, U. Riedel, and J. Warnatz, Trans. ASME J. Heat Transfer 117, 495 (1995).CrossRefGoogle Scholar
  7. 7.
    V. L. Kovalev and A. A. Krupnov, Vestn. Mosk. Univ., Ser. Mat. Mekh., No. 1, 31 (2004).Google Scholar
  8. 8.
    M. Cacciatore, M. Rutigliano, and G. D. Billing, J. Thermophys. Heat Transfer 13, 195 (1999).CrossRefGoogle Scholar
  9. 9.
    M. Rutigliano, A. Pieretti, M. Cacciatore, N. Sanna, and V. Baronne, Surf. Sci. 600, 4239 (2006).CrossRefGoogle Scholar
  10. 10.
    V. L. Kovalev and M. Yu. Pogosbekyan, Izv. Akad. Nauk, Ser. Mekh. Zhidk. Gaza, No. 4, 176 (2007).Google Scholar
  11. 11.
    S. Shiozaki, Y. Sakiyama, S. Takagi, and Y. Matsumoto, AIAA Paper No. 2008-1250.Google Scholar
  12. 12.
    V. L. Kovalev and M. Yu. Pogosbekyan, Vestn. Mosk. Univ., Ser. Mat. Mekh., No. 2, 44 (2009).Google Scholar
  13. 13.
    V. L. Kovalev, A. A. Krupnov, M. Yu. Pogosbekyan, and L. P. Sukhanov, Vestn. Mosk. Univ., Ser. Mat. Mekh., No. 4, 58 (2010).Google Scholar
  14. 14.
    V. L. Kovalev, A. A. Krupnov, M. Yu. Pogosbekyan, and L. P. Sukhanov, Izv. Akad. Nauk, Ser. Mekh. Zhidk. Gaza, No. 2, 154 (2010).Google Scholar
  15. 15.
    I. Armenise, M. Rutigliano, M. Cacciatore, and M. Capitelli, J. Thermophys. Heat Transfer 25, 627 (2011).Google Scholar
  16. 16.
    M. Balat-Pichelin, L. Bedra, O. Gerasimova, and P. Boubert, Chem. Phys. 340, 217 (2007).CrossRefGoogle Scholar
  17. 17.
    B. Hinnemann and E. A. Carter, J. Phys. Chem. C 111, 7105 (2007).CrossRefGoogle Scholar
  18. 18.
    I. Milas, B. Hinnemann, and E. A. Carter, J. Mater. Chem. 21, 1147 (2011).CrossRefGoogle Scholar
  19. 19.
    P. Guenard, G. Renaud, A. Barbier, and M. Gautier-Soyer, Mater. Res. Soc. Symp. Proc. 437, 15 (1996).CrossRefGoogle Scholar
  20. 20.
    J. Ahn and J. W. Rabalis, Surf. Sci. 388, 121 (1997).CrossRefGoogle Scholar
  21. 21.
    J. R. B. Gomes, P. R. de Moreira, P. Reinhardt, et al., Chem. Phys. Lett. 341, 412 (2001).CrossRefGoogle Scholar
  22. 22.
    J. M. Wittbrodt, W. L. Hase, and H. B. Schlegel, J. Phys. Chem. B 102, 6539 (1998).CrossRefGoogle Scholar
  23. 23.
    A. D. Becke, Phys. Rev. A 38, 3098 (1988).CrossRefGoogle Scholar
  24. 24.
    C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).CrossRefGoogle Scholar
  25. 25.
    P. C. Haharan and J. A. Pople, Theor. Chim. Acta 28, 213 (1973).CrossRefGoogle Scholar
  26. 26.
    I. Chorkendorff and J. W. Niemantsverdriet, Concepts of Modern Catalysis and Kinetics (Wiey-VCH, Weinheim, 2007; Intellekt, Dogoprudnyi, 2010).Google Scholar
  27. 27.
    S. Glasstone, K. H. Laidler, and H. Eyring, The Theory of Rate Processes (McGraw-Hill, New York, 1941; Inostrannaya Literatura, Moscow, 1948).Google Scholar
  28. 28.
    Yu. Ralchenko, A. E. Kramida, and J. Reader, (NIST ASD Team), NIST Atomic Spectra Database (National Institute of Standards and Technology, Gaithersburg, MD, 2011). Google Scholar
  29. 29.
    J. O. Hirschfelder, Ch. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954).Google Scholar
  30. 30.
    G. H. Vineyard, J. Phys. Chem. Solids 3, 121 (1957).CrossRefGoogle Scholar
  31. 31.
    M. Bala-Pishlen, V. L. Kovalev, A. F. Kolesnikov, and A. A. Krupnov, Izv. Akad. Nauk, Ser. Mekh. Zhidk. Gaza, No. 5, 181 (2008).Google Scholar
  32. 32.
    P. F. Kuruniczi, J. Guha, and V. M. Donnelly, J. Phys. Chem. B 109, 20989 (2005).CrossRefGoogle Scholar
  33. 33.
    J. Guha, P. F. Kuruniczi, L. Stafford, V. M. Donnelly, and Y.-K. Pu, J. Phys. Chem. C 109, 8963 (2008).CrossRefGoogle Scholar
  34. 34.
    Y. C. Kim and M. Boudart, Langmuir 7, 2999 (1991).CrossRefGoogle Scholar
  35. 35.
    V. Guerra, IEEE Trans. Plasma Sci. 35, 1397 (2007).CrossRefGoogle Scholar
  36. 36.
    E. M. Fernandez, R. I. Egitis, G. Borstel, and L. C. Balabas, Comp. Mater. Sci. 39, 587 (2007).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • A. A. Buchachenko
    • 1
    • 2
  • V. L. Kovalev
    • 2
    • 3
  • A. A. Krupnov
    • 3
  1. 1.Faculty of ChemistryMoscow State UniversityMoscowRussia
  2. 2.Faculty of Mechanics and MathematicsMoscow State UniversityMoscowRussia
  3. 3.Institute of MechanicsMoscow State UniversityMoscowRussia

Personalised recommendations