Russian Journal of Physical Chemistry B

, Volume 6, Issue 6, pp 752–760 | Cite as

Kinetic approach to modeling the radical polymerization of styrene in the presence dibenzyl trithiocarbonate

  • N. V. Ulitin
  • I. I. Nasyrov
  • T. R. Deberdeev
  • A. A. Berlin
Chemical Physics of Polymer Materials

Abstract

A mathematical model of the kinetics of the radical polymerization of styrene in the presence of dibenzyl trithiocarbonate by the reversible addition-fragmentation chain transfer mechanism with cross-termination of radicals and intermediates and quadratic termination of intermediates is developed. The adequacy of the polymerization mechanism underlying the model and the related mathematical formalism are tested by comparing the calculated and measured values of the average molecular-weight characteristics of resulting polystyrene.

Keywords

mathematical model reversible chain transfer cross-termination of intermediates polystyrene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Controlled/Living Radical Polymerization: Progress in ATRP, Ed. by K. Matyjaszewski (Amer. Chem. Society, Washington, D.C., 2009).Google Scholar
  2. 2.
    Controlled/Living Radical Polymerization: Progress in RAFT, DT, NMP and OMRP, Ed. by K. Matyjaszewski (Amer. Chem. Society, Washington, D.C., 2009).Google Scholar
  3. 3.
    Handbook of RAFT Polymerization, Ed. by C. Barner-Kowollik (Wiley-VCH, Weinheim, 2008).Google Scholar
  4. 4.
    E. V. Chernikova, P. S. Terpugova, E. S. Garina, and V. B. Golubev, Polymer Sci. A 49, 108 (2007).Google Scholar
  5. 5.
    Polymer Handbook, Eds. by J. Brandrup, E. H. Immergut, and E. A. Grulke (Wiley, New York, 1999).Google Scholar
  6. 6.
    L. I. Kuzub, N. I. Peregudov, and V. I. Irzhak, Polymer Sci. A 47, 1063 (2005).Google Scholar
  7. 7.
    P. B. Zetterlund and S. Perrier, Macromolecules 44, 1340 (2011).CrossRefGoogle Scholar
  8. 8.
    J. A. Biesenberger and D. H. Sebastian, Principles of Polymerization Engineering (Wiley, New York, 1983).Google Scholar
  9. 9.
    Y. K. Chong, J. Krstina, T. P. T. Le, et al., Macromolecules 36, 2256 (2003).CrossRefGoogle Scholar
  10. 10.
    A. Goto, K. Sato, Y. Tsujii, et al., Macromolecules 34, 402 (2001).CrossRefGoogle Scholar
  11. 11.
    Y. Kwak, A. Goto, and T. Fukuda, Macromolecules 37, 1219 (2004).CrossRefGoogle Scholar
  12. 12.
    A. W. Hui and A. E. Hamielec, J. Appl. Polym. Sci. 16, 749 (1972).CrossRefGoogle Scholar
  13. 13.
    D. Li and R. A. Hutchinson, Macromol. Rapid Commun. 28, 1213 (2007).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • N. V. Ulitin
    • 1
  • I. I. Nasyrov
    • 1
  • T. R. Deberdeev
    • 1
  • A. A. Berlin
    • 2
  1. 1.Kazan National Research Technological UniversityKazanRussia
  2. 2.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations