Advertisement

Russian Journal of Physical Chemistry B

, Volume 6, Issue 3, pp 333–340 | Cite as

Vector correlations in the F + HD reaction

  • M. B. Krasil’nikov
  • O. S. Vasyutinskii
  • D. De Fazio
  • S. Cavalli
  • V. Aquilanti
Elementary Physicochemical Processes

Abstract

A theoretical study of the orientation of product rotational angular momenta for two chemical reaction channels: F + HD(ν r = 0, j r = 0) → HF(ν, j) + D and F + HD(ν r = 0, j r = 0) → DF(ν, j) + H at a E coll = 78.54 meV collision energy was performed. Angular momentum orientation was described on the basis of irreducible tensor operators (state multipoles) expressed through anisotropy transfer coefficients, which contained quantum-mechanical scattering T matrices determined on the basis of exact solutions to quantum scattering equations obtained using the hyperquantization algorithm. The possibility of the existence of substantial orientation of the angular momentum of reaction products j in the direction perpendicular to the scattering plane was demonstrated. The dependences of differential reaction cross sections and state multi-poles on the ν and j quantum numbers were calculated and analyzed. A experimental scheme based on the multiphoton ionization method was suggested. The scheme can be used to detect predicted reaction product angular momentum orientation.

Keywords

state multipole differential cross section angular momentum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. R. Herschbach and D. A. Case, Mol. Phys. 30, 1537 (1975).CrossRefGoogle Scholar
  2. 2.
    M. de Miranda, D. C. Clary, J. F. Castillo, and D. E. Manolopoulos, J. Chem. Phys. 108, 3142 (1998).CrossRefGoogle Scholar
  3. 3.
    D. de Fazio, V. Aquilanti, S. Cavalli, et al., J. Chem. Phys. 125, 133109 (2006).CrossRefGoogle Scholar
  4. 4.
    A. G. Suits and O. S. Vasyutinskii, Chem. Rev. 106, 3706 (2008).CrossRefGoogle Scholar
  5. 5.
    R. T. Skodje, D. Skouteris, D. E. Manolopoulos, et al., Phys. Rev. Lett. 85, 1206 (2000).CrossRefGoogle Scholar
  6. 6.
    J. F. Castillo and D. E. Manolopoulos, Faraday Discuss. 110, 119 (1998).CrossRefGoogle Scholar
  7. 7.
    G. G. Balint-Kurt and O. S. Vasyutinskii, J. Phys. Chem. A 113, 14281 (2009).CrossRefGoogle Scholar
  8. 8.
    E. B. Aleksandrov, G. I. Khvostenko, and M. P. Chaika, Interference (Springer, Berlin, 1993; Nauka, Moscow, 1991).Google Scholar
  9. 9.
    D. de Fazio, V. Aquilanti, S. Cavalli, et al., J. Chem. Phys. 129, 064303 (2008).CrossRefGoogle Scholar
  10. 10.
    K. Blum, Density Matrix Theory and Applications (Plenum, New York, 1996; Mir, Moscow, 1983).Google Scholar
  11. 11.
    E. E. Nikitin and S. Y. Umanskii, Theory of Slow Atomic Collisions (Springer, Berlin, 1984).CrossRefGoogle Scholar
  12. 12.
    D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, Quantum Theory of Angular Momentum (Nauka, Leningrad, 1975; World Sci., Singapore, 1988).Google Scholar
  13. 13.
    D. de Fazio, J. M. Lucas, V. Aquilanti, and S. Cavalli, Phys. Chem. Chem. Phys. 13, 8571 (2011).CrossRefGoogle Scholar
  14. 14.
    K. Stark and H.-J. Werner, J. Chem. Phys. 104, 6515 (1996).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • M. B. Krasil’nikov
    • 1
  • O. S. Vasyutinskii
    • 1
  • D. De Fazio
    • 2
  • S. Cavalli
    • 3
  • V. Aquilanti
    • 3
  1. 1.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Instituto di Metodologie Inorganiche dei PlasmiCNR, Sez de RomaRomeItaly
  3. 3.Dipartamento di Chimica dell’UniversitaPerugiaItaly

Personalised recommendations