Russian Journal of Physical Chemistry B

, Volume 6, Issue 1, pp 140–148 | Cite as

Relaxation of excited molecules in a medium with memory at short and long times

Effect of External Factors on Physicochemical Transformations
  • 31 Downloads

Abstract

Two qualitatively different approaches to the dynamics of vibrational wave packets in the presence of medium-induced relaxation, with taking into account relaxation memory effects and without taking them into account (Makovian approximation) were compared for a molecular system with one vibrational degree of freedom (the Morse oscillator) in a medium. The time evolution of the populations of levels, mean system energy, and response of “pumping-probing” experiments were calculated. It was found that, as distinct from the Markovian approximation, the approach including memory effects can predict the evolution of a molecular system satisfying the detailed equilibrium principle. The two approaches specified also predict the existence of a qualitative difference of phase characteristics in the behavior of the system at short times.

Keywords

Memory Effect Femtosecond Pulse Excited Molecule Markovian Approximation Morse Oscillator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. M. Sarkisov and S. Ya. Umanskii, Usp. Khim. 70, 515 (2001).Google Scholar
  2. 2.
    R. N. Zare, Science 279, 1875 (1998).CrossRefGoogle Scholar
  3. 3.
    A. H. Zewail, Femtochemistry: Ultrafast Dynamics of the Chemical Bond (World Sci., Singapore, 1994).Google Scholar
  4. 4.
    Ed. V. Sundstrom, Ultrafast Reaction Dynamics at Atomic Scale Resolution. Femtochemistry and Femtobiology (Imperial College Press, London, 1997).Google Scholar
  5. 5.
    M. Shapiro and P. Brumer, Phys. Rep. 425, 195 (2006).CrossRefGoogle Scholar
  6. 6.
    M. Shapiro and P. Brumer, Rep. Prog. Phys. 66, 859 (2003).CrossRefGoogle Scholar
  7. 7.
    L. Van Dao, C. Lincoln, M. Lowe, and P. Hannaford, J. Chem. Phys. 120, 18 (2004).CrossRefGoogle Scholar
  8. 8.
    U. Fano, Rev. Mod. Phys. 29, 1 (1957).CrossRefGoogle Scholar
  9. 9.
    R. P. Feynman and F. L. Vernon, Jr., Ann. Phys. (N.Y.) 24, 118 (1963).CrossRefGoogle Scholar
  10. 10.
    U. Weiss, Quantum Dissipative Systems (World Scientific, Singapore, 1993).Google Scholar
  11. 11.
    S. Nakajima, Prog. Theor. Phys. 20, 948 (1958).CrossRefGoogle Scholar
  12. 12.
    R. Zwanzig, J. Chem. Phys. 33, 1338 (1960).CrossRefGoogle Scholar
  13. 13.
    R. Zwanzig, Lectures in Theoretical Physics, (Interscience, New York, 1961), Vol. 3.Google Scholar
  14. 14.
    A. S. Moskalenko, D. A. Rok, and S. Ya. Umanskii, Russ. J. Phys. Chem. B 4, 695 (2010).CrossRefGoogle Scholar
  15. 15.
    A. S. Moskalenko, D. A. Rok, and S. Ya. Umanskii, Russ. J. Phys. Chem. B 5, 8 (2011).CrossRefGoogle Scholar
  16. 16.
    S. Hahn and G. Stock, J. Chem. Phys. 116, 1085 (2002).CrossRefGoogle Scholar
  17. 17.
    C. Meier and D. Tannor, J. Chem. Phys. 111, 3365 (1999).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations