Russian Journal of Physical Chemistry B

, Volume 6, Issue 1, pp 112–127 | Cite as

Microwave radiation in the upper atmosphere of the earth during strong geomagnetic disturbances

  • G. V. Golubkov
  • M. G. Golubkov
  • M. I. Manzhelii
Effect of External Factors on Physicochemical Transformations


The influence of N2 and O2 molecules on spontaneous microwave radiation spectrum was studied over the decimeter range. This radiation appears in the D and E upper earth atmosphere layers during strong magnetic storms. It was shown to be caused by radiation transitions between medium-perturbed orbitally degenerate Rydberg atom and molecule states A** that occur without changes in the principal quantum number, δn = 0. The available experimental data were used to calculate the dependences of orbitally degenerate state populations on the density of medium and electron flux and temperature. Effective radiation bands were constructed for transitions between highly excited quasi-molecule levels A**N2 and A**O2. The emission spectrum was shown to be inhomogeneous and contain three frequency regions in which a noticeable decrease in the intensity of radiation occurred. The physical reason for the formation of these regions was a shift of the emission spectra of quasi-molecules containing unexcited N2 and O2 molecules. The frequency profiles of radiation intensity within these frequency regions were calculated as depending on the storm level. Radiation profiles were shown to noticeably change as the storm level increased, they strongly increased close to the right region edge corresponding to high transition frequencies. Nonmonotonic behavior of this profile in the middle of the lower region was observed; this was related to emission spectrum inhomogeneity. A sharp increase in radiation intensity as the magnetic storm level increased occurred in the region of frequencies situated close to the right edge of the upper region (50–100 GHz), which was most interesting for biophysical studies of the action of microwave radiation on living organisms during strong geomagnetic disturbances.


high-excitation states of atoms and molecules D and E layers of the upper atmosphere of the Earth neutral medium particles l mixing nonequilibrium two-temperature plasma microwave radiation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. V. Golubkov, M. I. Manzhelii, and I. V. Karpov, Russ. J. Phys. Chem. B 5, 406 (2011).CrossRefGoogle Scholar
  2. 2.
    S. V. Avakyan, J. Opt. Technol. 72, 608 (2005).CrossRefGoogle Scholar
  3. 3.
    L. M. Biberman, V. S. Vorob’ev, and I. T. Yakubov, Kinetics of Nonequilibrium Low-Temperature Plasma (Nauka, Moscow, 1982).Google Scholar
  4. 4.
    P. I. Gudzenko and S. I. Yakovlenko, Plasma Lasers (Atomizdat, Moscow, 1978).Google Scholar
  5. 5.
    Rydberg States of Atoms and Molecules, Eds. by R. Stebbings and F. Dunning (Cambridge Univ. Press, Cambridge, 1983; Mir, Moscow, 1985).Google Scholar
  6. 6.
    G. V. Golubkov and G. K. Ivanov, Rydberg States of Atoms and Molecules and Elementary Processes with their Participation (URSS, Moscow, 2001) [in Russian].Google Scholar
  7. 7.
    G. V. Golubkov, G. K. Ivanov, and E. M. Balashov, Khim. Fiz. 14(8), 38 (1995).Google Scholar
  8. 8.
    G. V. Golubkov and G. K. Ivanov, Khim. Fiz. 22(10), 25 (2003).Google Scholar
  9. 9.
    G. V. Golubkov, G. K. Ivanov, and E. M. Balashov, Sov. Phys. JETP 59, 1188 (1984).Google Scholar
  10. 10.
    G. V. Golubkov, M. G. Golubkov, and G. K. Ivanov, in The Atmosphere and Ionosphere: Dynamics, Processes and Monitoring, Eds. by V. L. Bychkov, G. V. Golubkov, and A. I. Nikitin (Springer, New York, 2010).Google Scholar
  11. 11.
    A. S. Davydov, Theory of Atomic Nucleus (Fizmatgiz, Moscow, 1958) [in Russian].Google Scholar
  12. 12.
    K. Takayanagi and S. Geltman, Phys. Rev. 128, A1003 (1965).CrossRefGoogle Scholar
  13. 13.
    A. Pavelev, T. Tsuda, K. Igarashi, et al., J. Atm. Sol.-Terr. Phys. 65, 59 (2003).CrossRefGoogle Scholar
  14. 14.
    K. S. Jacobsen, A. Pedersen, J. I. Moen, and T. A. Bekkeng, Measur. Sci. Technol. 21, 085902–1 (2010).CrossRefGoogle Scholar
  15. 15.
    N. V. Bakhmet’eva, I. I. Belikovich, L. M. Kagan, et al., Vestn. RFFI 3(53), 1 (2007).Google Scholar
  16. 16.
    J. Rurihara, T. Abe, K. Oyama, E. Griffin, et al., Earth Planets Space 58, 1123 (2006).Google Scholar
  17. 17.
    D. K. Sharma, P. K. Sharma, J. Rai, and S. C. Garg, Indian J. Radio Space Phys. 37, 319 (2008).CrossRefGoogle Scholar
  18. 18.
    B. M. Smirnov, The Weakly Ionized Gas Physics (Nauka, Moscow, 1978) [in Russian].Google Scholar
  19. 19.
    E. M. Livshits and L. P. Pitaevskii, Physical Kinetics (Nauka, Moscow, 1979; Pergamon, Oxford, 1981).Google Scholar
  20. 20.
    F. I. Dalidchik and Yu. S. Sayasov, Sov. Phys. JETP 22, 212 (1965).Google Scholar
  21. 21.
    G. V. Golubkov, V. V. Egorov, and N. M. Kuznetsov, Sov. J. Plasma Phys. 5, 324 (1979).Google Scholar
  22. 22.
    K. I. Ogama, T. Abe, H. Mori, and J. Y. Lin, Ann. Geophys. 26, 533 (2008).CrossRefGoogle Scholar
  23. 23.
    M. A. El’yashevich, General Questions of Spectroscopy (URSS, Moscow, 2006) [in Russian].Google Scholar
  24. 24.
    G. V. Golubkov and M. G. Golubkov, in Proceedings of the 2nd International Conference on Atmosphere, Ionosphere, Safety Kaliningrad, 2010, p. 204.Google Scholar
  25. 25.
    G. V. Golubkov and G. K. Ivanov, Khim. Fiz. 19(3), 57 (2000).Google Scholar
  26. 26.
    G. V. Golubkov, G. K. Ivanov, and E. M. Balashov, Opt. Spectrosc. 80, 27 (1996).Google Scholar
  27. 27.
    J. Picart, A. Edmonds, MinhN. Tran, and R. Pullen, J. Phys. B: At. Mol. Phys. 12, 2781 (1979).CrossRefGoogle Scholar
  28. 28.
    G. V. Golubkov, G. K. Ivanov, and M. G. Golubkov, Khim. Fiz. 24(6), 3 (2005).Google Scholar
  29. 29.
    G. V. Golubkov and G. K. Ivanov, J. Exp. Theor. Phys. 77, 574 (1993).Google Scholar
  30. 30.
    A. A. Radtsig and B. M. Smirnov, Handbook of Atomic and Molecular Physics (Atomizdat, Moscow, 1980) [in Russian].Google Scholar
  31. 31.
    National Weather Service. Space Weather Prediction Center.
  32. 32.
    C. N. Noble and P. G. Burke, Phys. Rev. Lett. 68, 2011 (1992).CrossRefGoogle Scholar
  33. 33.
    W. Sun, M. A. Morrison, W. Isaacs, et al., Phys. Rev. A 52, 1229 (1995).CrossRefGoogle Scholar
  34. 34.
    C. Greenhow and W. V. Smith, J. Chem. Phys. 19, 1298 (1951).CrossRefGoogle Scholar
  35. 35.
    G. Zeiss and W. J. Meath, Mol. Phys. 33, 1155 (1977).CrossRefGoogle Scholar
  36. 36.
    P. Soven, J. Chem. Phys. 82, 3289 (1985).CrossRefGoogle Scholar
  37. 37.
    A. P. Cerruti, P. M. Kintner, D. E. Gary, et al., Space Weather 6, 81 (2008).CrossRefGoogle Scholar
  38. 38.
    S. P. Sit’ko, Yu. A. Skripnik, and A. F. Yanenko, The Hardware of Modern Quantum Medicine Technologies (FADA, Kiev, 1999) [in Russian].Google Scholar
  39. 39.
    D. J. Panagopoulos, N. Messini, A. Karabarounis, et al., Biochem. Biophys. Res. Commun. 273, 634 (2000).CrossRefGoogle Scholar
  40. 40.
    D. J. Panagopoulos and L. H. Margaritis, in Biological Effects of Electromagnetic Fields, Ed. by P. Stavroulakis (Springer-Verlag, Berlin, Heidelberg, New York, 2003), p. 175.Google Scholar
  41. 41.
    Yu. B. Kudryashov, Yu. F. Perov, and A. B. Rubin, Radio Frequency and Microwave Electromagnetic Radiations (Fizmatlit, Moscow, 2007) [in Russian].Google Scholar
  42. 42.
    A. B. Rubin, S. I. Aksenov, A. A. Bulychev, et al., Biophysics (Mosk. Gos. Univ., Moscow, 2008) [in Russian].Google Scholar
  43. 43.
    I. R. Knyazeva, M. A. Medvedev, L. P. Zharkova, et al., Byul. Sib. Med. 1, 24 (2009).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • G. V. Golubkov
    • 1
  • M. G. Golubkov
    • 1
  • M. I. Manzhelii
    • 1
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations