Advertisement

Russian Journal of Physical Chemistry B

, Volume 5, Issue 5, pp 722–729 | Cite as

Role of rotational states in the charge exchange of a dipole-bound anion with a polar molecule

  • E. Yu. Buslov
  • B. A. Zon
Elementary Physicochemical Processes

Abstract

The Landau-Herring method is applied to derive an analytical expression for the exchange interaction potential of a polar molecule with its own dipole-bound anion with account of the relative orientation of the dipole moments of the molecular cores. The potential obtained is used to calculate the cross-section of the resonant charge exchange of a polar molecule with a dipole-bound anion. The influence of the rotation of the molecular cores on the charge exchange cross section is analyzed. A new mechanism of transformation of the charge exchange reaction from quasi-resonant to resonant due to the compensation of the resonance detuning by changes in the rotational states of the colliding molecules is considered.

Keywords

charge transfer charge exchange dipole-bound anions the intermolecular interaction potential 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. N. Compton and N. I. Hammer, Advances in Gas-Phase Ion Chemistry, Ed. by N. Adams and I. Babcock (Elsevier Sci., New York, 2001), Vol. 4, p. 257.Google Scholar
  2. 2.
    K. D. Jordan and F. Wang, Ann. Rev. Phys. Chem. 54, 367 (2003).CrossRefGoogle Scholar
  3. 3.
    E. Fermi and E. Teller, Phys. Rev. 72, 399 (1947).CrossRefGoogle Scholar
  4. 4.
    C. Desfrançois, H. Abdoul-Carime, N. Khelifa, and J. P. Schermann, Phys. Rev. Lett. 73, 2436 (1994).CrossRefGoogle Scholar
  5. 5.
    V. E. Chernov, A. V. Dolgikh, and B. A. Zon, Phys. Rev. A 72, 052701 (2005).CrossRefGoogle Scholar
  6. 6.
    V. E. Chernov, A. V. Danilyan, A. V. Dolgikh, F. B. Dunning, and B. A. Zon, Chem. Phys. Lett. 426, 30 (2006).CrossRefGoogle Scholar
  7. 7.
    F. Lecomte, S. Carles, C. Desfrancois, and M. A. Johnson, J. Chem. Phys. 113, 10973 (2000).CrossRefGoogle Scholar
  8. 8.
    T. Sommerfeld, Phys. Chem. Chem. Phys. 4, 2511 (2002).CrossRefGoogle Scholar
  9. 9.
    L. Suess, R. Parthasarathy, and F. B. Dunning, J. Chem. Phys. 119, 9532 (2003).CrossRefGoogle Scholar
  10. 10.
    Y. Liu, L. Suess, and F. B. Dunning, J. Chem. Phys. 122, 214313 (2005).CrossRefGoogle Scholar
  11. 11.
    Y. Liu, M. Cannon, L. Suess, F. B. Dunning, V. F. Chernov, and B. A. Zon, Chem. Phys. Lett. 433, 1 (2006).CrossRefGoogle Scholar
  12. 12.
    V. E. Chernov, A. V. Danilyan, and B. A. Zon, Phys. Rev. A 80, 022702 (2009).CrossRefGoogle Scholar
  13. 13.
    B. M. Smirnov, Asymptotical Methods in the Theory of Atomic Collisions (Nauka, Moscow, 1973) [in Russian].Google Scholar
  14. 14.
    L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Nonrelativistic Theory (Nauka, Moscow, 1989, 4th ed.; Pergamon Press, Oxford, 1977, 3rd ed.).Google Scholar
  15. 15.
    C. Herring, Rev. Mod. Phys. 34, 631 (1962).CrossRefGoogle Scholar
  16. 16.
    C. Herring and M. Flicker, Phys. Rev. A 134, 362 (1964).Google Scholar
  17. 17.
    M. I. Chibisov and R. K. Janev, Phys. Rep. 166, 1 (1988).CrossRefGoogle Scholar
  18. 18.
    V. Yu. Lazur, M. V. Khoma, and R. K. Janev, Phys. Rev. A 73, 032723 (2006).CrossRefGoogle Scholar
  19. 19.
    M. V. Khoma, M. Imai, O. M. Karbovanets, et al., Chem. Phys. 352, 142 (2008).CrossRefGoogle Scholar
  20. 20.
    M. V. Khoma, O. M. Karbovanets, M. I. Karbovanets, and R. J. Buenker, Phys. Scr. 78, 065201 (2008).CrossRefGoogle Scholar
  21. 21.
    M. V. Khoma, V. Yu. Lazur, and R. K. Janev, Phys. Rev. A 80, 032706 (2009).CrossRefGoogle Scholar
  22. 22.
    E. Yu. Buslov and B. A. Zon, J. Exp. Theor. Phys. 112, 38 (2011).CrossRefGoogle Scholar
  23. 23.
    P. G. Alcheev, V. E. Chernov, and B. A. Zon, J. Mol. Spectrosc. 211, 71 (2002).CrossRefGoogle Scholar
  24. 24.
    V. E. Chernov, I. Yu. Kiyan, H. Helm, and B. A. Zon, Phys. Rev. A 71, 033410 (2005).CrossRefGoogle Scholar
  25. 25.
    D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, Quantum Theory of Angular Momentum (Nauka, Leningrad, 1975; World Scientific, Singapore, 1988).Google Scholar
  26. 26.
    H. Abdoul-Carime and C. Desfrançois, Eur. Phys. J. D 2, 149 (1998).Google Scholar
  27. 27.
    N. I. Hammer, R. J. Hind, R. N. Compton, et al., J. Chem. Phys. 120, 685 (2004).CrossRefGoogle Scholar
  28. 28.
    M. Kessler, H. Ring, R. Trambarulo, and W. Gordy, Phys. Rev. 79, 54 (1950).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Voronezh State UniversityVoronezhRussia
  2. 2.Belgorod State UniversityBelgorodRussia

Personalised recommendations