Russian Journal of Physical Chemistry B

, Volume 5, Issue 6, pp 1038–1044 | Cite as

An iterative method for calculating the polar component of the molecular solvation Gibbs energy under a smooth change in the dielectric permittivity of a solution

  • F. V. Grigoriev
  • O. Yu. Kupervasser
  • I. P. Kikot’
Magnetic Properties of Materials

Abstract

An iterative method for calculating the polar component of the solvation Gibbs energy under a smooth change in dielectric permittivity, both between a substrate and a solvent and in a solvent is formulated on the basis of a previously developed model. The method is developed in the approximation of the local relationship D = ɛ(r)E between the displacement vectors D and the electric field intensity E.

Keywords

electrostatics solvation energy smoothed dielectric permittivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. V. Basilevsky, F. V. Grigoriev, and O. Yu. Kupervasser, J. Phys. Chem. B 114, 16427 (2010).CrossRefGoogle Scholar
  2. 2.
    M. V. Basilevsky, F. V. Grigoriev, E. A. Nikitina, and J. Leszczynski, J. Phys. Chem. B 114, 2457 (2010).CrossRefGoogle Scholar
  3. 3.
    J. Tomasi and M. Persico, Chem. Rev. 94, 2027 (1984).CrossRefGoogle Scholar
  4. 4.
    B. Klamt and S. Schuurmann, J. Chem. Soc., Perkin Trans. 2, 779 (1993).Google Scholar
  5. 5.
    M. L. Connolly, J. Appl. Crystallogr. 16, 548 (1983).CrossRefGoogle Scholar
  6. 6.
    M. Totrov and R. Abagyan, J. Struct. Biol. 116, 138 (1996).CrossRefGoogle Scholar
  7. 7.
    Y. N. Vorobjev and J. Hermans, Biophys. J. 73, 722 (1997).CrossRefGoogle Scholar
  8. 8.
    W. Im, D. Beglov, and B. Roux, Comput. Phys. Commun. 111, 59 (1998).CrossRefGoogle Scholar
  9. 9.
    M. A. Vorotintsev and A. A. Kornyshev, Electrostatics of Media with the Spatial Dispersion (Nauka, Moscow, 1993) [in Russian].Google Scholar
  10. 10.
    Y. Kharkats, A. A. Kornyshev, and M. A. Vorotyntsev, J. Chem. Soc., Faraday Trans. 2 72, 361 (1976).CrossRefGoogle Scholar
  11. 11.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, K. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gompers, R. E. Sratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, A. D. Daniels, O. Farkas, A. D. Rabuck, K. Raghavachari, and J. V. Ortiz, Gaussian 03, Rev. B.03 (Gaussian Inc., Pittsburgh, PA, 2003).Google Scholar
  12. 12.
    W. L. Jorgensen, J. P. Ulmschneider, and J. Tirado-Rivers, J. Phys. Chem. B 108, 16264 (2004).CrossRefGoogle Scholar
  13. 13.
    G. E. Chudinov, D. V. Napolov, and M. V. Basilevsky, Chem. Phys. 160, 41 (1992).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • F. V. Grigoriev
    • 1
  • O. Yu. Kupervasser
    • 1
  • I. P. Kikot’
    • 2
  1. 1.Research Computer CenterMoscow State UniversityMoscowRussia
  2. 2.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations