Russian Journal of Physical Chemistry B

, Volume 5, Issue 3, pp 465–473 | Cite as

Effect of the deformation of the double bond in chlorinated ethylene on the rate and mechanism of the reaction with ozone

  • B. E. Krisyuk
  • A. V. Maiorov
  • E. A. Mamin
  • A. A. Popov
Kinetics and Mechanism of Chemical Reactions. Catalysis

Abstract

The reactivity of the strained C=C bond of the 1-chloroethylene molecule in the reaction with ozone was studied using ab initio (MP2, CASSCT, MRMP2) and DFT (B3LYP) calculations in conjunction with the 6–31+G** basis set. The mechanisms of concerted and nonconcerted addition were examined. The strain ɛ was introduced into the problem by changing the length of the C=C bond and specifying it as a non-optimized coordinate. It is shown that, at least at ɛ ≤ 2%, the activation energy E a decreases linearly with increasing strain. The sensitivities of both channels of the reaction to the strain are similar and only slightly dependent on the method of calculation. The results are analyzed within the framework of a previously developed approach, which makes it possible to obtain an analytical dependence of E a on the force and to relate the change in E a during deformation to the length and rigidity of the initial and transition states.

Keywords

deformation activation energy rate constant rigidity sensitivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. H. Johes and E. Whittle, Int. J. Chem. Kinet. 2, 479 (1970).CrossRefGoogle Scholar
  2. 2.
    A. A. Popov and G. E. Zaikov, J. Macromol. Sci., Rev. Macromol. 27, 379 (1988).Google Scholar
  3. 3.
    B. E. Krisyuk, A. A. Popov, and E. T. Denisov, Vysokomol. Soedin., Ser. A 30, 1736 (1988).Google Scholar
  4. 4.
    B. E. Krisyuk and V. V. Cheremisin, Vysokomol. Soedin., Ser. A 34(11), 93 (1992).Google Scholar
  5. 5.
    B. E. Krisyuk, J. Mol. Struct. (Theochem) 677, 77 (2004).CrossRefGoogle Scholar
  6. 6.
    R. Criegee, Angew. Chem. 87, 765 (1975).CrossRefGoogle Scholar
  7. 7.
    W. B. DeMore, Int. J. Chem. Kinet. 1, 209 (1969).CrossRefGoogle Scholar
  8. 8.
    E. T. Denisov and B. E. Krisyuk, Khim. Fiz. 26(5), 34 (2007).Google Scholar
  9. 9.
    B. E. Krisyuk, Zh. Fiz. Khim. 79(1), 85 (2005) [Russ. J. Phys. Chem. A 79, 77 (2005)].Google Scholar
  10. 10.
    B. E. Krisyuk, Zh. Fiz. Khim. 78(12), 2214 (2004).Google Scholar
  11. 11.
    B. E. Krisyuk, Zh. Fiz. Khim. 78(4), 1 (2004) [Russ. J. Phys. Chem. A 78, 597 (2004)].Google Scholar
  12. 12.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr. T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03, Rev. C.02 (Gaussian Inc., Wallingford CT, 2004).Google Scholar
  13. 13.
    M. W. Schmidt K. K. Baldridge, J. A. Boatz, et al., J. Comput. Chem. 14, 1347 (1993).CrossRefGoogle Scholar
  14. 14.
    A. A. Granovsky, PC GAMESS, ver. 7.0, http://classic.chem.msu.su/gran/gamess/index.html.
  15. 15.
    B. E. Krisyuk, A. V. Maiorov, E. A. Mamin, and A. A. Popov, Khim. Fiz. 29(9), 20 (2010) [Russ. J. Phys. Chem. B 4, 726 (2010)].Google Scholar
  16. 16.
    S. K. Ignatov, Moltran, ver. 2.5 (Nizhni Novgorod, 2004), http://ichem.unn.ru/tcg/Moltran.html.
  17. 17.
    B. E. Krisyuk, A. V. Maiorov, V. A. Ovchinnikov, and A. A. Popov, Khim. Fiz. 29(10), 18 (2010) [Russ. J. Phys. Chem. B 4, 734 (2010)].Google Scholar
  18. 18.
  19. 19.
    J. Zhang, S. Hatakeyama, and H. Akimoto, Int. J. Chem. Kinet. 15, 665 (1983).CrossRefGoogle Scholar
  20. 20.
    I. Ljubic and A. Sabljic, J. Phys. Chem. A 016, 4745 (2002).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • B. E. Krisyuk
    • 1
  • A. V. Maiorov
    • 2
  • E. A. Mamin
    • 2
  • A. A. Popov
    • 2
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  2. 2.Emanuel Institute of Biochemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations