Russian Journal of Physical Chemistry B

, Volume 5, Issue 2, pp 227–234 | Cite as

Combination of micro- and macroscopic descriptions of the kinetics of chemical reactions and processes of vibrational energy exchange in a multicomponent gas mixture

  • O. V. Skrebkov
Kinetics and Mechanism of Chemical Reactions. Catalysis


Chemical and vibrational kinetics equations for a multicomponent reacting gas mixture constructed by combining microscopic (level-by-level) and macroscopic (mode) descriptions are presented. A mixture of diatomic molecules, anharmonic oscillators, which interact with each other and other generally polyatomic components is treated as a subsystem described microscopically, that is, in the form of equations of balance of vibrational state populations. The subsystem of polyatomic components is considered macroscopically, that is, in the form of equations for component concentrations and mean vibrational mode energies. The kinetic equations obtained this way for a system as a whole correctly describe interactions between components considered microscopically and macroscopically.


multicomponent gas mixture chemical reactions vibrational nonequilibrium anharmonic oscillator population of vibrational states harmonic oscillator vibrational modes of polyatomic molecules 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. C. Brown, Combust. Flame 62, 1 (1985).CrossRefGoogle Scholar
  2. 2.
    O. V. Skrebkov, S. P. Karkach, A. N. Ivanova, and S. S. Kostenko, Kinet. Katal. 50(4), 1 (2009) [Kinet. Catal. 50, 461 (2009)].CrossRefGoogle Scholar
  3. 3.
    C. M. Tarver, J. Phys. Chem. A 101, 4845 (1997).CrossRefGoogle Scholar
  4. 4.
    C. Park, Nonequilibrium Hypersonic Aerothermodynamics (Wiley, New York, 1990).Google Scholar
  5. 5.
    A. S. Bashkin, V. I. Igoshin, A. N. Oraevskii, and V. A. Shcheglov, Chemical Lasers (Nauka, Moscow, 1982) [in Russian].Google Scholar
  6. 6.
    S. A. Losev, Gas-Dynamic Lasers (Nauka, Moscow, 1977) [in Russian].Google Scholar
  7. 7.
    K. Smith and R. Thompson, Computer Modeling of Gas Lasers (Plenum Press, New York, 1978; Mir, Moscow, 1981).Google Scholar
  8. 8.
    A. S. Biryukov and B. F. Gordiets, Prikl. Mekh. Teor. Fiz., No. 6, 29 (1972).Google Scholar
  9. 9.
    V. M. Vasil’ev, S. V. Kulikov, and O. V. Skrebkov, Prikl. Mekh. Teor. Fiz., No. 4, 13 (1977).Google Scholar
  10. 10.
    O. V. Skrebkov and S. V. Kulikov, Chem. Phys. 227, 349 (1998).CrossRefGoogle Scholar
  11. 11.
    Nonequilibrium Vibrational Kinetics, Ed. by M. Capitelli (Springer, Berlin, Heidelberg, New York, Tokio, 1986; Mir, Moscow, 1989).Google Scholar
  12. 12.
    N. M. Kuznetsov, Dokl. Akad. Nauk SSSR 202, 1467 (1972).Google Scholar
  13. 13.
    N. M. Kuznetsov, Prikl. Mekh. Teor. Fiz., No. 3, 46 (1972).Google Scholar
  14. 14.
    E. E. Nikitin and A. I. Osipov, in Results of Science and Engineering, Ser. Kinetics and Catalysis (VINITI, Moscow, 1977), Vol. 4 [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations