Russian Journal of Physical Chemistry B

, Volume 5, Issue 2, pp 244–249 | Cite as

The thermal decomposition of azidopyridines

  • V. V. Nedel’ko
  • B. L. Korsunskii
  • T. S. Larikova
  • Yu. M. Mikhailov
  • S. V. Chapyshev
  • N. V. Chukanov
Kinetics and Mechanism of Chemical Reactions. Catalysis

Abstract

The thermal decomposition of new heteroaromatic polyazides 2,6-diazido-3,5-dicyanopyridine, 2,4,6-triazido-3,5-dicyanopyridine, and 2,3,4,5-tetraazido-6-cyanopyridine was studied by thermogravimetry, volumetry, mass-spectrometry, and IR spectroscopy. Reaction kinetic parameters were determined. The only gaseous product of the thermal decomposition of all the azides studied was nitrogen, its degree of purity was 99.0–99.8 vol %. 2,6-Diazido-3,5-dicyanopyridine and 2,4,6-triazido-3,5-dicyanopyridine had thermal stability and thermal decomposition parameters close to those of the majority of aromatic azides. The mechanism of thermal decomposition of these azides includes the splitting off of the nitrogen molecule at the initial limiting process stage. Subsequent intermolecular reactions with the participation of nitrenes result in the formation of an amorphous substance containing polyconjugated fragments with sp 2 hybridization, which form planar two-dimensional networks. 2,3,4,5-Tetraazido-6-cyanopyridine has very low thermal stability; the rate of nitrogen release during its decomposition is almost 1000 times higher than with 2,6-diazido-3,5-dicyanopyridine and 2,4,6-triazido-3,5-dicyanopyridine at comparable temperatures. This was explained by the presence of the ortho azido group (there is no ortho arrangement of azido groups in 2,6-diazido-3,5-dicyanopyridine and 2,4,6-triazido-3,5-dicyanopyridine).

Keywords

azidopyridines thermal decomposition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Ye, H. Gao, J. A. Boatz, et al., Angew. Chem., Int. Ed. Engl. 45, 7262 (2006).CrossRefGoogle Scholar
  2. 2.
    M. H. V. Huynh, M. A. Hiskey, D. E. Chavez, D. L. Naud, and R. D. Gillard, J. Amer. Chem. Soc. 127, 12537 (2005).CrossRefGoogle Scholar
  3. 3.
    M. H. V. Huynh, M. A. Hiskey, J. G. Archuleta, and E. L. Roemer, Angew. Chem., Int. Ed. Engl. 44, 737 (2005).CrossRefGoogle Scholar
  4. 4.
    M. H. V. Huynh, M. A. Hiskey, J. G. Archuleta, E. L. Roemer, and R. D. Gillard, Angew. Chem., Int. Ed. Engl. 43, 5658 (2004).CrossRefGoogle Scholar
  5. 5.
    M. H. V. Huynh, M. A. Hiskey, E. L. Hartline, D. P. Montoya, and R. D. Gillard, Angew. Chem., Int. Ed. Engl. 43, 4924 (2004).CrossRefGoogle Scholar
  6. 6.
    D. R. Miller, D. C. Swenson, and E. G. Gillan, J. Amer. Chem. Soc. 126, 5372 (2004).CrossRefGoogle Scholar
  7. 7.
    Yu. M. Mikhailov, S. V. Chapyshev, and V. V. Nedelko, Izv. AN. Ser. khim., No. 10, 2034 (2009).Google Scholar
  8. 8.
    S. Marburg and P. A. Crieco, Tetrahedron Lett. 7, 1305 (1966).CrossRefGoogle Scholar
  9. 9.
    L. N. Gal’perin and Yu. R. Kolesov, Izmer. Tekhn., No. 4, 23 (1981).Google Scholar
  10. 10.
    L. K. Dyall and W. M. Wah, Austral. J. Chem. 38, 1045 (1985).CrossRefGoogle Scholar
  11. 11.
    P. Walker and W. A. Waters, J. Chem. Soc., No. 5, 1632 (1962).Google Scholar
  12. 12.
    L. K. Dyall and J. E. Kemp, J. Chem. Soc. B, p. 976 (1968).Google Scholar
  13. 13.
    L. K. Dyall, Austral. J. Chem. 28, 2147 (1975).CrossRefGoogle Scholar
  14. 14.
    R. S. Stepanov, L. A. Kruglyakova, and E. S. Buka, Kinet. Katal. 27, 479 (1986).Google Scholar
  15. 15.
    V. G. Prokudin and V. N. Grebennikov, Chemical Physics of Combustion and Explosion Processes. Kinetics of Chemical Reactions (OIKhF AN SSSR, Chernogolovka, 1986), p. 78 [in Russian].Google Scholar
  16. 16.
    A. Yu. Tyurin, A. M. Churakov, Yu. A. Strelenko, M. O. Ratnikov, and V. A. Tartakovskii, Izv. RAN, Ser. Khim., No. 9, 1589 (2006).Google Scholar
  17. 17.
    K. Banert, Angew. Chem., Int. Ed. Engl. 26, 879 (1987).CrossRefGoogle Scholar
  18. 18.
    V. V. Nedelko, N. V. Chukanov, A. V. Raevskii, et al., Propellants, Explosives, Pyrotechnics. 25, 255 (2000).CrossRefGoogle Scholar
  19. 19.
    V. V. Nedelko, A. V. Shastin, B. L. Korsunskii, et al., Izv. RAN, Ser. Khim., No. 7, 1660 (2005).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • V. V. Nedel’ko
    • 1
  • B. L. Korsunskii
    • 1
  • T. S. Larikova
    • 1
  • Yu. M. Mikhailov
    • 1
  • S. V. Chapyshev
    • 1
  • N. V. Chukanov
    • 1
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations