Russian Journal of Physical Chemistry B

, Volume 4, Issue 7, pp 1051–1060 | Cite as

The formation of Al2O3 nanoparticles in the oxidation of aluminum by water under sub- and supercritical conditions

  • A. A. Vostrikov
  • O. N. Fedyaeva
  • I. I. Fadeeva
  • M. Ya. Sokol


Massive aluminum samples were oxidized by sub- and supercritical water with the formation of (AlOOH) n and (Al2O3) n nanoparticles. The release of H2 began at 523 K when the reagents were heated uniformly to 700 K. The time lag of the beginning of oxidation was 140 s when supercritical water was injected into a reactor with aluminum samples at 665 K and 23.1 MPa. Oxidized aluminum powders were analyzed using a transmission electron microscope. Predominantly large (300–400 nm) α-Al2O3 particles were formed when supercritical water was injected into a reactor with aluminum. Smaller (20–50 nm) γ-Al2O3 particles were also observed in samples oxidized by water vapor under temperature increase conditions. Kinetic equations describing the rate of H2 formation in the reaction of H2O with aluminum were obtained. Possible nanostructuring mechanisms are discussed.


sub- and supercritical water aluminum oxidation nanoparticles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. Vostrikov, O. N. Fedyaeva, A. V. Shishkin, and M. Ya. Sokol, Superkrit. Flyuidy Teor. Prakt. 2(4), 43 (2007).Google Scholar
  2. 2.
    A. A. Vostrikov, O. N. Fedyaeva, A. V. Shishkin, and M. Ya. Sokol, J. Supercrit. Fluids 48, 161 (2009).CrossRefGoogle Scholar
  3. 3.
    A. Yu. Godymchuk, A. P. Il’in, and A. P. Astankova, Izv. Tomsk. Politekh. Univ. 310, 102 (2007).Google Scholar
  4. 4.
    A. I. Rat’ko, V. E. Romanenkov, E. V. Bolotnikova, and Zh. V. Krupen’kina, Kinet. Katal. 45, 154 (2004) [Kinet. Catal. 45, 141 (2004)].Google Scholar
  5. 5.
    S. F. Tikhov, V. E. Romanenkov, V. A. Sadykov, et al., Porous Composites Based on Oxide-Aluminum Cermets. Synthesis and Properties (SO RAN, Novosibirsk, 2004) [in Russian].Google Scholar
  6. 6.
    G. P. Panasyuk, M. N. Danchevskaya, V. N. Belan, and I. L. Voroshilov, J. Phys.: Condens. Matter 16, S1215 (2004).CrossRefGoogle Scholar
  7. 7.
    T. Adschiri, Y. Hakuta, K. Sue, and K. Arai, J. Nanopart. Res. 3, 227 (2001).CrossRefGoogle Scholar
  8. 8.
    C. Bousquet, F. Cansell, C. Ellissalde, et al., in Proc. of the 11th Eur. Meeting on Supercritical Fluids: Reactions, Materials and Natural Products Processing, Barcelona, Spain, 8–11 May, 2008, CD.Google Scholar
  9. 9.
    R. A. Lidin, L. L. Andreeva, and V. A. Molochko, Constants of Inorganic Substances, The Handbook (Drofa, Moscow, 2006) [in Russian].Google Scholar
  10. 10.
    L. V. Gurvich, G. V. Karachevtsev, V. N. Kondrat’ev, Yu. A. Lebedev, V. A. Medvedev, V. K. Potapov, and Yu. S. Khodeev, Bond-Breaking Energies. Chemical Ionization Potentials and Electron Affinity (Nauka, Moscow, 1974) [in Russian].Google Scholar
  11. 11.
    A. A. Vostrikov and D. Yu. Dubov, Zh. Eksp. Teor. Fiz. 98, 222 (2004) [JETP 71, 197 (2004)].Google Scholar
  12. 12.
    V. S. Fomenko, Emission Properties of Materials, The Handbook (Naukova dumka, Kiev, 1981) [in Russian].Google Scholar
  13. 13.
    S. Gregg and K. Sing, Adsorption, Surface Area and Porosity (Academic Press, London, 1982; Mir, Moscow, 1984).Google Scholar
  14. 14.
    S. F. Tikhov, Yu. V. Potapova, V. A. Sadykov, et al., Kinet. Katal. 44, 322 (2003) [Kinet. Catal. 44, 297 (2003)].CrossRefGoogle Scholar
  15. 15.
    A. A. Aleksandrov and B. A. Grigor’ev, Tables of Thermophysical Properties of Water and Aqueous Vapour (Mosc. Energ. Inst., Moscow, 2003) [in Russian].Google Scholar
  16. 16.
    V. A. Zhuravlev and A. P. Zakharov, Dokl. Akad. Nauk SSSR 254, 1155 (1980).Google Scholar
  17. 17.
    O. Redlich and J. N. S. Kwong, Chem. Rev. 44, 233 (1949).CrossRefGoogle Scholar
  18. 18.
    Dzh. M. Ferry and L. I. Baumgartner, Thermodynamic Modeling of Geologic Materials: Minerals, Fluids, and Melts, Ed. by I. S. E. Carmichael and H. P. Eugster (Mir, Moscow, 1992); Rev. Mineral. 17 (1987).Google Scholar
  19. 19.
    N. Akinfiev and A. Zotov, Geochim. Cosmochim. Acta 63, 2025 (1999).CrossRefGoogle Scholar
  20. 20.
    R. Reid, D. Prausnits, and T. Sherwood, The Properties of Gases and Liquids (McGraw-Hill, New York, 1966; Khimiya, Leningrad, 1982).Google Scholar
  21. 21.
    A. A. Vostrikov, S. V. Drozdov, V. S. Rudnev, and L. I. Kurkina, Comp. Math. Sci. 35, 254 (2006).CrossRefGoogle Scholar
  22. 22.
    D. Yu. Dubov and A. A. Vostrikov, Pis’ma Zh. Eksp. Teor. Fiz. 88, 771 (2008) [JETP Lett. 88, 674 (2008)].Google Scholar
  23. 23.
    A. A. Vostrikov and S. A. Psarov, Pis’ma Zh. Tekh. Fiz. 28(18), 54 (2002) [Tech. Phys. Lett. 28, 776 (2002)].Google Scholar
  24. 24.
    A. E. Sheindlin and A. Z. Zhuk, Ros. Khim. Zh. 50(6), 105 (2006).Google Scholar
  25. 25.
    A. A. Vostrikov, S. A. Psarov, D. Yu. Dubov, et al., Khim. Tverd. Tela, No. 4, 29 (2007).Google Scholar
  26. 26.
    A. A. Vostrikov, A. V. Shishkin, O. N. Fedyaeva, and M. Ya. Sokol, in Proc. of the 2nd All-Russ. Conf. on Multiscale Modelling of Processes and Structures in Nanotechnologies, Moscow, 27–29 May, 2009 (Mosc. Inzh. Fiz. Inst., Moscow, 2009), p. 468.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • A. A. Vostrikov
    • 1
  • O. N. Fedyaeva
    • 1
  • I. I. Fadeeva
    • 1
    • 2
  • M. Ya. Sokol
    • 1
  1. 1.Kutateladze Institute of Thermal Physics, Siberian DivisionRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations