Russian Journal of Physical Chemistry B

, Volume 4, Issue 5, pp 860–863 | Cite as

The stabilization of magnetic solitons in carbon nanotubes by a constant electric field at low temperatures

Chemical Physics of Nanomaterials
  • 28 Downloads

Abstract

The propagation of a variable electromagnetic field in a bundle of zigzag carbon nanotubes in the presence of a constant electric field at low temperatures is considered. The electronic system of nanotubes is treated microscopically ignoring interactions with the phonon subsystem, because the electromagnetic field pulse is extremely short. An effective equation for the amplitude of the vector-potential of a variable electromagnetic field was obtained. Solutions similar to solitons that corresponded to isolated waves in the case of the cosine dispersion law for the electronic subsystem were revealed. The dependences of the obtained nonlinear solutions on problem parameters and an applied constant electric field were analyzed.

Keywords

carbon nanotubes electromagnetic solitons stabilization electric field 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Harris, Carbon Nanotubes and Related Structures. New Matherials for the Twenty-First Century (Cambridge Univ., New York, 1999; Tekhnosfera, Moscow, 2003).CrossRefGoogle Scholar
  2. 2.
    M. B. Belonenko, E. V. Demushkina, and N. G. Lebedev, J. Russ. Laser Res. 27, 457 (2006).CrossRefGoogle Scholar
  3. 3.
    M. B. Belonenko, E. V. Demushkina, and N. G. Lebedev, Izv. Akad. Nauk, Ser. Fiz. 72, 28 (2008).Google Scholar
  4. 4.
    M. B. Belonenko, E. V. Demushkina, and N. G. Lebedev, Fiz. Tverd. Tela 50, 367 (2008) [Phys. Solid State 50, 383 (2008)].Google Scholar
  5. 5.
    M. B. Belonenko, E. V. Demushkina, and N. G. Lebedev, Izv. Akad. Nauk, Ser. Fiz. 72, 711 (2008).Google Scholar
  6. 6.
    M. B. Belonenko, E. V. Demushkina, and N. G. Lebedev, Khim. Fiz. 27(7), 97 (2008) [Russ. J. Phys. Chem. B 2, 745 (2008)].Google Scholar
  7. 7.
    M. B. Belonenko, E. V. Demushkina, and N. G. Lebedev, Proc. SPIE-Int. Soc. Opt. Eng. 7024, 70240 (2008).Google Scholar
  8. 8.
    A. S. Il’inskii, and L. V. Keldysh, Spectral Theory Methods Applied to Problems of Wave Propagation (Mosk. Gos. Univ., Moscow, 1989) [in Russian].Google Scholar
  9. 9.
    I. A. Kvasnikov, Thermodynamics and Statistical Physics. Vol. 4: Quantum Statistics (KomKniga, Moscow, 2005) [in Russian].Google Scholar
  10. 10.
    Solitons, Ed. by R. K. Bullough and P. J. Caudrey (Springer, Berlin, 1980; Mir, Moscow, 1983).Google Scholar
  11. 11.
    M. B. Belonenko and N. G. Lebedev, Khim. Fiz. 29(2), 71 (2010) [Russ. J. Phys. Chem. B 4, 151 (2010)].Google Scholar
  12. 12.
    N. S. Bakhvalov, Numerical Methods: Analysis, Algebra, Ordinary Differential Equations (Nauka, Moscow, 1975). [in Russian].Google Scholar
  13. 13.
    N. F. Stepanov, Quantum Mechanics and Quantum Chemistry (Mir, Moscow, 2001) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Volgograd State UniversityVolgogradRussia
  2. 2.Laboratory of NanotechnologiesVolgograd Institute of BusinessVolgogradRussia

Personalised recommendations