Advertisement

Russian Journal of Physical Chemistry B

, Volume 4, Issue 5, pp 742–747 | Cite as

Reactions of molybdenum atoms with NO, O2, N2O, and CO2 molecules behind shock waves

Kinetics and Mechanism of Chemical Reactions. Catalysis
  • 36 Downloads

Abstract

Experimental results on the interaction of Mo atoms with various oxygen-containing molecules (NO, O2, N2O, and CO2) at high temperatures (>1200 K) are presented, which are in close agreement with measurements at moderate and low temperatures. It is demonstrated that the height of the activation barrier is additionally increased for spin-forbidden reactions and that an increase in the heat of reaction causes an increase in the rate constant for a given type of reaction. For the reactions of Mo atoms with O2 and N2O, interpolated temperature dependences of the rate constants, based on the high-temperature measurements conducted in the present work and the published low-temperature data, are proposed.

Keywords

molybdenum atoms reactions NO O2 N2and CO2 molecules 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. M. C. Plane, Chem. Rev. 103, 4963 (2003).CrossRefGoogle Scholar
  2. 2.
    L. Deguillaume, M. Leriche, K. Desboeufs, et al., Chem. Rev. 105, 3388 (2005).CrossRefGoogle Scholar
  3. 3.
    G. T. Linteris, M. D. Rumminger, and V. I. Babushok, Prog. Energy Combust. Sci. 34, 288 (2008).CrossRefGoogle Scholar
  4. 4.
    W. P. Linak and J. O. L. Wendt, Prog. Energy Combust. Sci. 19, 145 (1993).CrossRefGoogle Scholar
  5. 5.
    U. S. Akhmadov, I. S. Zaslonko, and V. N. Smirnov, Kinet. Katal. 29, 291 (1988).Google Scholar
  6. 6.
    M. L. Campbell, J. Phys. Chem. A 107, 3048 (2003).CrossRefGoogle Scholar
  7. 7.
    A. Fontijn, Pure Appl. Chem. 70, 469 (1998).CrossRefGoogle Scholar
  8. 8.
    U. S. Akhmadov, I. S. Zaslonko, and V. N. Smirnov, Kinet. Katal. 29, 942 (1988).Google Scholar
  9. 9.
    R. E. McClean, M. L. Campbell, and R. H. Goodwin, J. Phys. Chem. 100, 7502 (1996).CrossRefGoogle Scholar
  10. 10.
    L. Lian, S. A. Mitchell, and D. M. Rayner, J. Phys. Chem. 98, 11637 (1994).CrossRefGoogle Scholar
  11. 11.
    M. L. Campbell, R. E. McClean, and J. S. S. Harter, Chem. Phys. Lett. 235, 497 (1995).CrossRefGoogle Scholar
  12. 12.
    K. E. Lewis, D. M. Golden, and G. P. Smith, J. Am. Chem. Soc. 106, 3905 (1984).CrossRefGoogle Scholar
  13. 13.
    B. V. L’vov, Atomic Absorption Spectral Analysis (Nauka, Moscow, 1966) [in Russian].Google Scholar
  14. 14.
    A. U. Acuna and D. Husain, J. Chem. Soc., Faraday Trans. 69, 585 (1973).CrossRefGoogle Scholar
  15. 15.
    Thermodynamic Properties of Individual Substances, The Handbook, Ed. by V. P. Glushko (Nauka, Moscow, 1978), vol. 1, pt. 2 [in Russian].Google Scholar
  16. 16.
    Thermodynamic Properties of Individual Substances, The Handbook, Ed. by V. P. Glushko (Nauka, Moscow, 1982), vol. 4, pt. 2 [in Russian].Google Scholar
  17. 17.
    I. Shim and K. A. Gingerich, J. Mol. Struct. (Theochem) 460, 123 (1999).CrossRefGoogle Scholar
  18. 18.
    J. M. Parnis, S. A. Mitchell, and P. A. Hackett, J. Phys. Chem. 94, 8152 (1990).CrossRefGoogle Scholar
  19. 19.
    S. A. Mitchell and P. A. Hackett, J. Chem. Phys. 93, 7822 (1990).CrossRefGoogle Scholar
  20. 20.
    D. Ritter and J. C. Weisshaar, J. Phys. Chem. 94, 4907 (1990).CrossRefGoogle Scholar
  21. 21.
    G. H. Jeung, P. Luc, R. Vetter, et al., Phys. Chem. Chem. Phys. 4, 596 (2002).CrossRefGoogle Scholar
  22. 22.
    R. E. McClean and L. Pasternack, J. Phys. Chem. 96,9828 (1992).CrossRefGoogle Scholar
  23. 23.
    D. Ritter and J. C. Weisshaar, J. Phys. Chem. 93, 1576 (1989).CrossRefGoogle Scholar
  24. 24.
    D. E. Clemmer, K. Honma, and I. Koyano, J. Phys. Chem. 97, 11480 (1993).CrossRefGoogle Scholar
  25. 25.
    M. L. Campbell and K. L. Hooper, J. Chem. Soc., Faraday Trans. 93, 2139 (1997).CrossRefGoogle Scholar
  26. 26.
    T. Wakabayashi, Y. Nakai, and Y. Ishikawa, Chem. Lett., 331 (1997).Google Scholar
  27. 27.
    V. N. Kondrat’ev and E. E. Nikitin, Kinetics and Mechanism of Gas Phase Reactions (Nauka, Moscow, 1974) [in Russian].Google Scholar
  28. 28.
    V. N. Smirnov, Doctoral Dissertation in Mathematics and Physics (IKhF RAN, Moscow, 2009).Google Scholar
  29. 29.
    U. V. Choudary, K. A. Gingerich, and J. E. Kingcade, J. Less. Common Met. 42, 111 (1975).CrossRefGoogle Scholar
  30. 30.
    J. B. Pedley and E. M. Marshall, J. Phys. Chem. Ref. Data 12, 967 (1983).CrossRefGoogle Scholar
  31. 31.
    H. P. Loock, B. Simard, S. Wallin, et al., Chem. Phys. 109, 8980 (1998).Google Scholar
  32. 32.
    M. R. Sievers, Y.-M. Chen, and P. B. Armentrout, Chem. Phys. 105, 6322 (1996).Google Scholar
  33. 33.
    J. Sugar and A. Musgrove, J. Phys. Chem. Ref. Data 17, 155 (1988).CrossRefGoogle Scholar
  34. 34.
    P. Song, W. Guan, C. Yao, et al., Theor. Chem. Acc. 117, 407 (2007).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Chechen State UniversityGrozny, Chechen RepublicRussia

Personalised recommendations