Advertisement

Russian Journal of Physical Chemistry B

, Volume 4, Issue 4, pp 671–675 | Cite as

Thermal electron capture in organic compound-carbon dioxide gas mixtures

  • E. A. Vasil’ev
  • E. M. Gushchin
  • N. A. Mikhanchuk
  • I. M. Obodovskii
  • S. G. Pokachalov
Physical Methods for Studying Chemical Reactions
  • 32 Downloads

Abstract

The rates of free thermal electron capture were measured depending on the buffer gas (CO2) pressure for 15 organic compounds in an ionization chamber with laser cathode photoionization. Procedures for preparing the tested gas mixtures and experimental data processing are described.

Keywords

Ionization Chamber Electron Cloud Electron Drift Experimental Data Processing Laser Pulse Width 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Electron-Molecule Interactions and Their Applications, Ed. by L. G. Christophorou (Academic, New York, London, 1984), Vols. 1, 2.Google Scholar
  2. 2.
    K. H. Becker, C. W. McCurdy, T. M. Orlando, and T. N. Rescigno, “Current Status and Future Perspectives of Electron Interactions with Molecules, Clusters, Surfaces, and Interfaces,” Techn. Rep. (Stevens Inst. of Technol., Hoboken, NJ, 2000).Google Scholar
  3. 3.
    G. Bakale and R. D. McCreary, Carcinogenesis 8, 253 (1987).CrossRefGoogle Scholar
  4. 4.
    G. Bakale and R. D. McCreary, Carcinogenesis 11, 1811 (1990).CrossRefGoogle Scholar
  5. 5.
    L. G. H. Huxley and R. W. Crompton, The Diffusion and Drift of Electrons in Gases (Wiley, New York, 1974; Mir, Moscow, 1977).Google Scholar
  6. 6.
    A. V. Brandin, E. M. Gushchin, N. A. Mikhanchuk, et al., Prib. Tekh. Eksp., No. 3, 1 (2006) [Instrum. Exp. Tech. 49, 420 (2006)].Google Scholar
  7. 7.
    E. M. Gushchin, N. A. Mikhanchuk, and S. G. Pokachalov, Pis’ma Zh. Tekh. Fiz. 31(17), 43 (2005) [Tech. Phys. Lett. 31, 738 (2005)].Google Scholar
  8. 8.
    A. V. Brandin, E. M. Gushchin, S. G. Pokachalov, et al., Izv. Vyssh. Uchebn. Zaved., Ser. Elektron., No. 3, 77 (2004).Google Scholar
  9. 9.
  10. 10.
    M. A. Kirsanov, A. A. Kruglov, I. M. Obodovski, and S. G. Pokachalov, Nucl. Instrum. Methods Phys. Res. A 327, 159 (1993).CrossRefGoogle Scholar
  11. 11.
    Y. Kokaku, Y. Hatano, H. Shimamory, and R. W. Fessenden, J. Chem. Phys. 71, 4883 (1979).CrossRefGoogle Scholar
  12. 12.
    L. G. Christophorou, Z. Phys. Chem. (Leipzig) 195, 195 (1996).Google Scholar
  13. 13.
    E. M. Gushchin and S. V. Somov, Prib. Tekh. Eksp., No. 4, 41 (2000) [Instrum. Exp. Tech. 43, 470 (2000)].Google Scholar
  14. 14.
    G. A. Gallup, K. Aflatooni, and P. D. Burrow, J. Chem. Phys. 118, 2562 (2003).CrossRefGoogle Scholar
  15. 15.
    W. Barszczewska, A. Rosa, J. Kopyra, and I. Szamrej, Res. Chem. Intermediat. 27, 699 (2001).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • E. A. Vasil’ev
    • 1
  • E. M. Gushchin
    • 1
  • N. A. Mikhanchuk
    • 1
  • I. M. Obodovskii
    • 1
  • S. G. Pokachalov
    • 1
  1. 1.Moscow State Institute of Engineering PhysicsTechnical UniversityMoscowRussia

Personalised recommendations