Advertisement

Russian Journal of Physical Chemistry B

, Volume 4, Issue 3, pp 423–427 | Cite as

Thermal dissociation of chromium hexacarbonyl and its decomposition products—Unsaturated carbonyls

Kinetics and Mechanism of Chemical Reactions. Catalysis
  • 90 Downloads

Abstract

The thermal dissociation of chromium hexacarbonyl was studied behind incident shock waves by means of molecular and atomic resonance absorption spectroscopies. The results obtained by these two methods were found to be in close agreement with each other and with the published data on the laser pyrolysis of this compound. A joint interpretation of the experimental results on Cr(CO)6 dissociation obtained in the present work and the available data on the recombination of CO molecules with unsaturated chromium carbonyls, Cr(CO)5 and Cr(CO)4, within the framework of the Rice-Ramsperger-Kassel-Marcus theory made it possible to estimate the bond dissociation energies of all six ligands and to determine, for the first time, the corresponding dissociation rate constants in the low- and high-pressure limits.

Keywords

Dissociation Energy Bond Dissociation Energy Incident Shock Wave Thermal Dissociation Dissociation Rate Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. C. Baily and S. H. Longer, Chem. Rev. 81, 109 (1981).CrossRefGoogle Scholar
  2. 2.
    J. P. Collman, L. S. Hegedus, J. R. Norton, and R. G. Finke, Principles and Applications of Organ-otransition Metal Chemistry (Univ. Sci. Books, California, 1987).Google Scholar
  3. 3.
    J. R. Wells and E. J. Weitz, J. Am. Chem. Soc. 114, 2783 (1992).CrossRefGoogle Scholar
  4. 4.
    K. S. Suslick, J. W. Goodale, P. F. Schubert, and H. H. Wang, J. Am. Chem. Soc. 105, 5781 (1983).CrossRefGoogle Scholar
  5. 5.
    I. P. Herman, Chem. Rev. 89, 1323 (1989).CrossRefGoogle Scholar
  6. 6.
    S. Matsuda and D. Gutman, J. Phys. Chem. 75, 2402 (1971).CrossRefGoogle Scholar
  7. 7.
    M. Kotzian, N. Rosch, H. Schroder, and M. C. Zerner, J. Am. Chem. Soc. 111, 7687 (1989).CrossRefGoogle Scholar
  8. 8.
    V. N. Smirnov, Kinet. Katal. 34, 591 (1993).Google Scholar
  9. 9.
    K. E. Lewis, D. M. Golden, and G. P. Smith, J. Am. Chem. Soc. 106, 3905 (1984).CrossRefGoogle Scholar
  10. 10.
    H. J. Mick, P. Roth, and V. N. Smirnov, Kinet. Katal. 37, 5 (1996) [Kinet. Catal. 37, 1 (1996)].Google Scholar
  11. 11.
    T. R. Fletcher and R. N. Rosenfeld, J. Am. Chem. Soc. 110, 2097 (1988).CrossRefGoogle Scholar
  12. 12.
    Y. Ishikawa, C. E. Brown, P. A. Hackett, and D. M. Rayner, J. Phys. Chem. 94, 2404 (1990).CrossRefGoogle Scholar
  13. 13.
    M. Quack and J. Troe, in Unimolecular Reactions and Energy Transfer of Highly Excited Molecules. Reaction Kinetics. Specialist Periodical Reports, Ed. by P. O. Ashmore and R. J. Donovan (The Chemical Soc., London, 1977), Vol. 2, ch. 5, p. 175.Google Scholar
  14. 14.
    A. Berces, J. Phys. Chem. 100, 16538 (1996).CrossRefGoogle Scholar
  15. 15.
    T. A. Seder, S. P. Church, and E. Weitz, J. Am. Chem. Soc. 108, 4121 (1986).Google Scholar
  16. 16.
    J. Kim, T. K. Kim, J. Kim, et al., J. Phys. Chem. A 111, 4697 (2007).CrossRefGoogle Scholar
  17. 17.
    D. A. Pittam, G. Pilcher, D. S. Barnes, et al., J. Less-Common Met. 42, 217 (1975).CrossRefGoogle Scholar
  18. 18.
    S. A. Trushin, K. Sugawara, and H. Takeo, Chem. Phys. Lett. 267, 573 (1997).CrossRefGoogle Scholar
  19. 19.
    S. A. Trushin, W. Fuss, W. E. Schmid, and K. L. Kompa, J. Phys. Chem. A 102, 4129 (1998).CrossRefGoogle Scholar
  20. 20.
    B. Venkataraman, H. Hou, Zh. Zhang, et al., J. Chem. Phys. 92, 5338 (1990).CrossRefGoogle Scholar
  21. 21.
    D. M. Rayner, Y. Ishikawa, C. E. Brown, and P. A. Hackett, J. Chem. Phys. 94, 5471 (1991).CrossRefGoogle Scholar
  22. 22.
    R. Sniatynsky and D. L. Cedeno, J. Mol. Struct. (Theochem.) 711, 123 (2004).CrossRefGoogle Scholar
  23. 23.
    Y. Ishikawa and K. Kawakami, J. Phys. Chem. A 111, 9940 (2007).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations