Russian Journal of Physical Chemistry B

, Volume 3, Issue 8, pp 1187–1190 | Cite as

The Conversion of tetralones into naphthols in supercritical water



The reactivity of several 1- and 2-tetralones in subcritical and supercritical (T = 400°C, ρ = 0.2 g/cm3) water was studied. Tetralones and Tetralin were shown to undergo dehydrogenation with the formation of naphthols and naphthalene, respectively.

Key words

supercritical water tetralones naphthols dehydrogenation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Akiya and P. E. Savage, Chem. Rev. 102, 2725 (2002).CrossRefGoogle Scholar
  2. 2.
    A. R. Katritzky, S. M. Allin, and M. Siskin, Acc. Chem. Res. 29, 399 (1996).CrossRefGoogle Scholar
  3. 3.
    A. A. Galkin and V. V. Lunin, Usp. Khim. 74(1), 24 (2005).Google Scholar
  4. 4.
    B. K. Mehta, K. Kumamoto, K. Yanagisawa, and H. Kotsuki, Tetrahedron Lett. 46, 6953 (2005).CrossRefGoogle Scholar
  5. 5.
    G. A. Olah, Angew. Chem., Int. Ed. Engl. 32, 767 (1993).CrossRefGoogle Scholar
  6. 6.
    G. A. Olah and D. A. Klumpp, Superelectrophiles and Their Chemistry (Wiley, New York, 2008).Google Scholar
  7. 7.
    K. Yu. Koltunov, I. B. Repinskaya, M. M. Shakirov, and L. N. Shchegoleva, Zh. Org. Khim. 30, 82 (1994).Google Scholar
  8. 8.
    I. B. Repinskaya, K. Yu. Koltunov, M. M. Shakirov, L. N. Shchegoleva, and V. A. Koptyug, Zh. Org. Khim. 29, 972 (1993).Google Scholar
  9. 9.
    K. Yu. Koltunov, G. K. S. Prakash, G. Rasul, and G. A. Olah, J. Org. Chem. 67, 8943 (2002).CrossRefGoogle Scholar
  10. 10.
    K. Yu. Koltunov, G. K. S. Prakash, G. Rasul, and G. A. Olah, Heterocycles 62, 757 (2004).CrossRefGoogle Scholar
  11. 11.
    K. Yu. Koltunov, S. Walspurger, and J. Sommer, Chem. Commun., No. 15, 1754 (2004).Google Scholar
  12. 12.
    K. Yu. Koltunov, S. Walspurger, and J. Sommer, J. Mol. Catal. A 245, 231 (2006).CrossRefGoogle Scholar
  13. 13.
    K. Minami, T. Suzuki, T. Aizawa, K. Sue, K. Arai, and R. L. Smith, Jr., Fluid Phase Equilib. 257, 177 (2007).CrossRefGoogle Scholar
  14. 14.
    N. Akiya and P. E. Savage, Ind. Eng. Chem. Res. 40, 1822 (2001).CrossRefGoogle Scholar
  15. 15.
    K. Yu. Koltunov, Tetrahedron Lett. 49, 3891 (2008).CrossRefGoogle Scholar
  16. 16.
    M. Canel, P. Missal, and K. Hedden, Erdol. Kohle Erdgas Petrochem. 46, 143 (1993).Google Scholar
  17. 17.
    M. L. Poutsma, Energy Fuels 4, 113 (1990).CrossRefGoogle Scholar
  18. 18.
    J. Yu and S. Eser, Ind. Eng. Chem. Res. 37, 4601 (1998).CrossRefGoogle Scholar
  19. 19.
    K. Seemeyer, R. H. Hertwig, J. Hrusak, W. Kock, and H. Schwarz, Organomet. 14, 4409 (1995).CrossRefGoogle Scholar
  20. 20.
    R. H. Schlosberg, A. Kurs, G. D. Duper, and R. J. Pancirov, ACS Fuel Chem. 30(1), 379 (1985).Google Scholar
  21. 21.
    J. M. Springer, C. W. Hinman, E. J. Eisenbraun, W. K. Flanagan, M. C. Hamming, and D. E. Linder, J. Org. Chem. 36, 686 (1971).CrossRefGoogle Scholar
  22. 22.
    I. Yuranov, L. Kiwi-Minsker, and A. Renken, Appl. Catal. A 226, 193 (2002).CrossRefGoogle Scholar
  23. 23.
    V. A. Koptyug and T. P. Andreeva, Zh. Org. Khim. 7, 2398 (1971).Google Scholar
  24. 24.
    Y. Wang, N. Shah, F. E. Huggins, and G. P. Hiffman, Energy Fuels 20, 2612 (2006).CrossRefGoogle Scholar
  25. 25.
    Y. Ogino, Catalysis and Surface Properties of Liquid Metals and Alloys (Marcel Dekker, New York, 1987), p. 79.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Boreskov Institute of Catalysis, Siberian DivisionRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations