Advertisement

Russian Journal of Physical Chemistry B

, Volume 3, Issue 7, pp 1019–1034 | Cite as

The kinetics and mechanism of doped corundum structure formation in an water fluid

  • Yu. D. Ivakin
  • M. N. Danchevskaya
  • O. G. Ovchinnikova
  • G. P. Murav’eva
  • V. A. Kreisberg
Article

Abstract

The kinetics and mechanism of corundum formation from hydrargillite in an water medium under sub- and supercritical conditions in the presence of manganese ions was studied. The conclusion was drawn that corundum structure formation with the insertion and uniform distribution of manganese ions occurred thanks to solid-state mobility, which appeared under the conditions of reversible dehydroxylation in the interaction of a solid matrix with an water fluid. Complex defects containing Mn2+, Mn3+, and Mn4+ ions along with hydroxyl groups and oxygen vacancies were formed when corundum was doped with manganese ions in different charge states because of redox processes in a supercritical water fluid. Corundum doped with manganese exhibited ferromagnetic properties at room temperature.

Key words

fine-cristalline corundum manganese-doped corundum supercritical water fluid solid-phase transformation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. V. Usov, G. P. Panasyuk, and V. B. Lazarev, Zh. Neorg. Khim. 35, 2464 (1990).Google Scholar
  2. 2.
    L. V. Usov, G. P. Panasyuk, and V. B. Lazarev, Zh. Neorg. Khim. 35, 2741 (1990).Google Scholar
  3. 3.
    V. B. Lazarev, G. P. Panasyuk, and M. N. Danchevskaya, Zh. VKhO Mendeleeva 36, 706 (1991).Google Scholar
  4. 4.
    L. V. Usov, Zh. Neorg. Khimii 41, 1447 (1996).Google Scholar
  5. 5.
    V. B. Lazarev, G. P. Panssyuk, I. L. Voroshilov, G. P. Budova, M. N. Danchevskaya, S. N. Torbin, and Yu. D. Ivakin, Ind. Eng. Chem. Res. 35, 3721 (1996).CrossRefGoogle Scholar
  6. 6.
    M. N. Danchevskaya, O. G. Ovchinnikova, Yu. D. Ivakin, and G. P. Muravieva, Zh. Fiz. Khim. 74, 1391 (2000) [Russ. J. Phys. Chem. 74, 1250 (2000)].Google Scholar
  7. 7.
    M. N. Danchevskaya, Yu. D. Ivakin, S. N. Torbin, G. P. Pansyuk, V. N. Belan, and I. L. Voroshilov, High Press. Res. 20, 229 (2001).CrossRefGoogle Scholar
  8. 8.
    K. Torkar and H. Krischner, Mh. Chem. 91, 764 (1960).Google Scholar
  9. 9.
    P. K. Panda, V. A. Jaleel, and S. Usha Devi, J. Mater. Sci. 41, 8386 (2006).CrossRefGoogle Scholar
  10. 10.
    K. Sue, M. Suzuki, K. Arai, T. Ohashi, H. Ura, K. Matsui, Y. Hakuta, H. Hayashi, M. Watanabe, and T. Hiaki, Green Chem. 8, 634 (2006).CrossRefGoogle Scholar
  11. 11.
    M. N. Danchevskaya, Yu. D. Ivakin, G. P. Muravieva, and A. I. Zui, Vestn. Mosc. Univ., Ser. 2: Khimiya 38(1), 21 (1997).Google Scholar
  12. 12.
    M. N. Danchevskaya, S. N. Torbin, Yu. D. Ivakin, and G. P. Muravieva, J. Phys.: Condens. Matter 16, 1187 (2004).CrossRefGoogle Scholar
  13. 13.
    O. V. Al’myasheva, E. N. Korytkova, A. V. Maslov, and V. V. Gusarov, Neorg. Mater. 41, 540 (2005) [Inorg. Mater. 41, 460 (2005)].Google Scholar
  14. 14.
    M. N. Danchevskaya, Yu. D. Ivakin, L. F. Martynova, A. I. Zuy, G. P. Muravieva, and V. B. Lazarev, J. Thermal Analys. 46, 1215 (1996).CrossRefGoogle Scholar
  15. 15.
    Yu. D. Ivakin, A. I. Zui, G. P. Murav’eva, and M. N. Danchevskaya, Vestn. Mosc. Univ., Ser. 2: Khimiya 42, 258 (2001).Google Scholar
  16. 16.
    Yu. D. Ivakin, M. N. Danchevskaya, and G. P. Muravieva, in Proc. of the 11the Eur. Meeting on Supercritical Fluids Reactions, Materials and Natural Products Processing (Barcelona, Spain, 2008), p. 6.Google Scholar
  17. 17.
    S. Ono, G. Yamagushi, H. Yanagida, and T. Shimizu, J. Ceram. Assos. Jpn. 76(7), 207 (1968).Google Scholar
  18. 18.
    Yu. D. Ivakin, G. P. Muravieva, and M. N. Danchevskaya, High Press. Res. 20, 87 (2001).CrossRefGoogle Scholar
  19. 19.
    M. N. Danchevskaya, Yu. D. Ivakin, and O. G. Ovchin-nikova, Vestn. Mosc. Univ., Ser. 2: Khimiya 44, 287 (2003).Google Scholar
  20. 20.
    B. V. Erofeev, Dokl. Akad. Nauk SSSR 52, 515 (1946).Google Scholar
  21. 21.
    M. I. F. Macedo, C. A. Bertran, and C. C. Osawa, Eng. Chem. Mat. Sci. 42, 2830 (2007).Google Scholar
  22. 22.
    C. S. Nordahl and G. L. Messing, Thermochim. Acta 318, 187 (1998).CrossRefGoogle Scholar
  23. 23.
    Yu. D. Ivakin, M. N. Danchevskaya, S. N. Torbin, V. A. Kreisberg, and L. F. Martynova, in Proc. of the 7th Meeting on Supercritical Fluids Particles Design, Materials and Natural Products Processing (Antibes, France, 2000), vol. 1, p. 525.Google Scholar
  24. 24.
    Zh. Syushe, Physical Chemistry of Semiconductors (Metallurgiya, Moscow, 1969) [in Russian].Google Scholar
  25. 25.
    V. N. Kuklina, E. A. Levitskii, L. M. Plyasova, and V. I. Zharkov, Kinet. Katal. 13, 1269 (1972).Google Scholar
  26. 26.
    M. Pyzalski and M. Wojcik, J. Thermal Analys. 36, 2147 (1990).CrossRefGoogle Scholar
  27. 27.
    M. Pijolat, M. Dauzat, and M. Soustelle, Thermochim. Acta 122, 71 (1987).CrossRefGoogle Scholar
  28. 28.
    Yu. D. Ivakin, M. N. Danchevskaya, G. P. Murav’eva, and S. N. Torbin, Vestn. Mosc. Univ., Ser. 2: Khimiya 38, 312 (1997).Google Scholar
  29. 29.
    M. N. Danchevskaya, Yu. D. Ivakin, S. N. Torbin, and G. P. Muravieva, J. Supercritical Fluids 42, 419 (2007).CrossRefGoogle Scholar
  30. 30.
    A. I. Zui, Candidate’s Dissertation in Chemistry (1997).Google Scholar
  31. 31.
    M. N. Danchevskaya, Yu. D. Ivakin, O. G. Ovchinnikova, and V. N. Smirnov, J. Non-Cryst. Solids 149, 46 (1992).CrossRefGoogle Scholar
  32. 32.
    Yu. D. Ivakin, M. N. Danchevskaya, O. G. Ovchinnikova, and G. P. Muravieva, J. Mater. Sci. 41, 1377 (2006).CrossRefGoogle Scholar
  33. 33.
    M. N. Danchevskaya, S. N. Torbin, V. A. Kreisberg, and E. V. Yazeva, in Proc. of the 8th Intern. Meeting of Supercritical Fluids, Chemical Reactivity and Material Processing in Supercritical Fluids, Bordeaux, France, 14–17 Apr. 2002 (2002), Vol. 2, p. 675.Google Scholar
  34. 34.
    R. P. Bashuk and S. V. Grum-Grzhimailo, in Crystal Spectroscopy, Collected vol. (Nauka, Moscow, 1966), p. 204 [in Russian].Google Scholar
  35. 35.
    E. G. Valyashko, S. V. Grum-Grzhimailo, I. M. Kutovoi, V. N. Mednikova, and R. K. Sviridova, in Crystal Spectroscopy, Collected vol. (Nauka, Moscow, 1966), p. 211 [in Russian].Google Scholar
  36. 36.
    D. T. Sviridov, R. K. Sviridova, and Yu. F. Smirnov, Optical Spectra of Transitional Metals in Crystals (Nauka, Moscow, 1976) [in Russian].Google Scholar
  37. 37.
    S. Geschwind, P. Kisliuk, M. P. Klein, J. P. Remeika, and D. L. Wood, Phys. Rev. 126, 1684 (1962).CrossRefGoogle Scholar
  38. 38.
    B. R. Jovanic, J. Luminescence 75, 171 (1997).CrossRefGoogle Scholar
  39. 39.
    A. Lever, Inorganic Electronic Spectroscopy (Elsevier, Amsterdam, New York, 1985; Mir, Moscow, 1987), Vol. 2.Google Scholar
  40. 40.
    N. Mironova, V. Skvortsova, A. Smirnov, and L. Cugunov, Opt. Mater. 6, 225 (1996).CrossRefGoogle Scholar
  41. 41.
    E. Hanamura, Y. Kawabe, H. Takashima, T. Sato, and A. Tomita, J. Nonlinear Opt. Phys. Mater. 12, 467 (2003).CrossRefGoogle Scholar
  42. 42.
    K. H. Hsu, M. R. Yang, and K. S. Chen, J. Mater. Sci.: Mater. Electronics 9, 283 (1998).CrossRefGoogle Scholar
  43. 43.
    M. Yu, J. Lin, Y. H. Zhou, and S. B. Wang, Mater. Lett. 56, 1007 (2002).CrossRefGoogle Scholar
  44. 44.
    Ya. Zhydachevskii, A. Durygin, V. Drozd, A. Suchocki, D. Sugak, and J. Wrobel, J. Phys.: Condens. Matter 20, 095204 (2008).CrossRefGoogle Scholar
  45. 45.
    G. B. Loutts, M. Warren, L. Taylor, R. R. Rakhimov, H. R. Ries, G. Miller, M. A. Noginov, M. Curley, N. Noginova, N. Kikhtarev, H. J. Caulfield, and P. Venkateswarlu, Phys. Rev. B 57, 3706 (1998).CrossRefGoogle Scholar
  46. 46.
    D. S. McClure, Solid State Phys. 9, 399 (1959).CrossRefGoogle Scholar
  47. 47.
    K. H. Lee and J. J. H. Crawford, Phys. Rev. B 15, 4065 (1977).CrossRefGoogle Scholar
  48. 48.
    K. H. Lee and J. H. Crawford, Jr., Phys. Rev. B 19, 3217 (1979).CrossRefGoogle Scholar
  49. 49.
    B. D. Evans and M. Stapelbroek, Phys. Rev. B 18, 7089 (1978).CrossRefGoogle Scholar
  50. 50.
    V. S. Kortov, I. I. Mil’man, S. V. Nikiforov, and V. E. Pelenev, Fiz. Tverd. Tela 45, 1202 (2003) [Phys. Solid State 45, 1260 (2003)].Google Scholar
  51. 51.
    Y. H. Zhou, J. Lin, S. B. Wang, and H. J. Zhang, Opt. Mater. 20, 13 (2002).CrossRefGoogle Scholar
  52. 52.
    S. P. Feofilov, A. B. Kulinkin, A. B. Kutsenko, and R. I. Zakharchenya, J. Luminescence 76, 217 (1998).CrossRefGoogle Scholar
  53. 53.
    A. Krause and E. Dinjus, J. Supercritical Fluids 39, 362 (2007).CrossRefGoogle Scholar
  54. 54.
    T. Sato, M. Watanabe, J. Smith, T. Adschiri, and K. Arai, J. Supercritical Fluids 28, 69 (2004).CrossRefGoogle Scholar
  55. 55.
    S. V. Grum-Grzhimailo, Zap. Vses. Min. Obshch. 6(1), 175 (1958).Google Scholar
  56. 56.
    S. V. Grum-Grzhimailo, Dokl. Akad. Nauk SSSR 60, 1377 (1948).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • Yu. D. Ivakin
    • 1
  • M. N. Danchevskaya
    • 1
  • O. G. Ovchinnikova
    • 1
  • G. P. Murav’eva
    • 1
  • V. A. Kreisberg
    • 1
  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations