Skip to main content
Log in

The kinetics and mechanism of doped corundum structure formation in an water fluid

  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The kinetics and mechanism of corundum formation from hydrargillite in an water medium under sub- and supercritical conditions in the presence of manganese ions was studied. The conclusion was drawn that corundum structure formation with the insertion and uniform distribution of manganese ions occurred thanks to solid-state mobility, which appeared under the conditions of reversible dehydroxylation in the interaction of a solid matrix with an water fluid. Complex defects containing Mn2+, Mn3+, and Mn4+ ions along with hydroxyl groups and oxygen vacancies were formed when corundum was doped with manganese ions in different charge states because of redox processes in a supercritical water fluid. Corundum doped with manganese exhibited ferromagnetic properties at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. V. Usov, G. P. Panasyuk, and V. B. Lazarev, Zh. Neorg. Khim. 35, 2464 (1990).

    CAS  Google Scholar 

  2. L. V. Usov, G. P. Panasyuk, and V. B. Lazarev, Zh. Neorg. Khim. 35, 2741 (1990).

    CAS  Google Scholar 

  3. V. B. Lazarev, G. P. Panasyuk, and M. N. Danchevskaya, Zh. VKhO Mendeleeva 36, 706 (1991).

    Google Scholar 

  4. L. V. Usov, Zh. Neorg. Khimii 41, 1447 (1996).

    CAS  Google Scholar 

  5. V. B. Lazarev, G. P. Panssyuk, I. L. Voroshilov, G. P. Budova, M. N. Danchevskaya, S. N. Torbin, and Yu. D. Ivakin, Ind. Eng. Chem. Res. 35, 3721 (1996).

    Article  CAS  Google Scholar 

  6. M. N. Danchevskaya, O. G. Ovchinnikova, Yu. D. Ivakin, and G. P. Muravieva, Zh. Fiz. Khim. 74, 1391 (2000) [Russ. J. Phys. Chem. 74, 1250 (2000)].

    CAS  Google Scholar 

  7. M. N. Danchevskaya, Yu. D. Ivakin, S. N. Torbin, G. P. Pansyuk, V. N. Belan, and I. L. Voroshilov, High Press. Res. 20, 229 (2001).

    Article  Google Scholar 

  8. K. Torkar and H. Krischner, Mh. Chem. 91, 764 (1960).

    CAS  Google Scholar 

  9. P. K. Panda, V. A. Jaleel, and S. Usha Devi, J. Mater. Sci. 41, 8386 (2006).

    Article  CAS  Google Scholar 

  10. K. Sue, M. Suzuki, K. Arai, T. Ohashi, H. Ura, K. Matsui, Y. Hakuta, H. Hayashi, M. Watanabe, and T. Hiaki, Green Chem. 8, 634 (2006).

    Article  CAS  Google Scholar 

  11. M. N. Danchevskaya, Yu. D. Ivakin, G. P. Muravieva, and A. I. Zui, Vestn. Mosc. Univ., Ser. 2: Khimiya 38(1), 21 (1997).

    CAS  Google Scholar 

  12. M. N. Danchevskaya, S. N. Torbin, Yu. D. Ivakin, and G. P. Muravieva, J. Phys.: Condens. Matter 16, 1187 (2004).

    Article  Google Scholar 

  13. O. V. Al’myasheva, E. N. Korytkova, A. V. Maslov, and V. V. Gusarov, Neorg. Mater. 41, 540 (2005) [Inorg. Mater. 41, 460 (2005)].

    Google Scholar 

  14. M. N. Danchevskaya, Yu. D. Ivakin, L. F. Martynova, A. I. Zuy, G. P. Muravieva, and V. B. Lazarev, J. Thermal Analys. 46, 1215 (1996).

    Article  CAS  Google Scholar 

  15. Yu. D. Ivakin, A. I. Zui, G. P. Murav’eva, and M. N. Danchevskaya, Vestn. Mosc. Univ., Ser. 2: Khimiya 42, 258 (2001).

    CAS  Google Scholar 

  16. Yu. D. Ivakin, M. N. Danchevskaya, and G. P. Muravieva, in Proc. of the 11the Eur. Meeting on Supercritical Fluids Reactions, Materials and Natural Products Processing (Barcelona, Spain, 2008), p. 6.

  17. S. Ono, G. Yamagushi, H. Yanagida, and T. Shimizu, J. Ceram. Assos. Jpn. 76(7), 207 (1968).

    CAS  Google Scholar 

  18. Yu. D. Ivakin, G. P. Muravieva, and M. N. Danchevskaya, High Press. Res. 20, 87 (2001).

    Article  Google Scholar 

  19. M. N. Danchevskaya, Yu. D. Ivakin, and O. G. Ovchin-nikova, Vestn. Mosc. Univ., Ser. 2: Khimiya 44, 287 (2003).

    CAS  Google Scholar 

  20. B. V. Erofeev, Dokl. Akad. Nauk SSSR 52, 515 (1946).

    Google Scholar 

  21. M. I. F. Macedo, C. A. Bertran, and C. C. Osawa, Eng. Chem. Mat. Sci. 42, 2830 (2007).

    CAS  Google Scholar 

  22. C. S. Nordahl and G. L. Messing, Thermochim. Acta 318, 187 (1998).

    Article  CAS  Google Scholar 

  23. Yu. D. Ivakin, M. N. Danchevskaya, S. N. Torbin, V. A. Kreisberg, and L. F. Martynova, in Proc. of the 7th Meeting on Supercritical Fluids Particles Design, Materials and Natural Products Processing (Antibes, France, 2000), vol. 1, p. 525.

    Google Scholar 

  24. Zh. Syushe, Physical Chemistry of Semiconductors (Metallurgiya, Moscow, 1969) [in Russian].

    Google Scholar 

  25. V. N. Kuklina, E. A. Levitskii, L. M. Plyasova, and V. I. Zharkov, Kinet. Katal. 13, 1269 (1972).

    CAS  Google Scholar 

  26. M. Pyzalski and M. Wojcik, J. Thermal Analys. 36, 2147 (1990).

    Article  CAS  Google Scholar 

  27. M. Pijolat, M. Dauzat, and M. Soustelle, Thermochim. Acta 122, 71 (1987).

    Article  CAS  Google Scholar 

  28. Yu. D. Ivakin, M. N. Danchevskaya, G. P. Murav’eva, and S. N. Torbin, Vestn. Mosc. Univ., Ser. 2: Khimiya 38, 312 (1997).

    CAS  Google Scholar 

  29. M. N. Danchevskaya, Yu. D. Ivakin, S. N. Torbin, and G. P. Muravieva, J. Supercritical Fluids 42, 419 (2007).

    Article  CAS  Google Scholar 

  30. A. I. Zui, Candidate’s Dissertation in Chemistry (1997).

  31. M. N. Danchevskaya, Yu. D. Ivakin, O. G. Ovchinnikova, and V. N. Smirnov, J. Non-Cryst. Solids 149, 46 (1992).

    Article  CAS  Google Scholar 

  32. Yu. D. Ivakin, M. N. Danchevskaya, O. G. Ovchinnikova, and G. P. Muravieva, J. Mater. Sci. 41, 1377 (2006).

    Article  CAS  Google Scholar 

  33. M. N. Danchevskaya, S. N. Torbin, V. A. Kreisberg, and E. V. Yazeva, in Proc. of the 8th Intern. Meeting of Supercritical Fluids, Chemical Reactivity and Material Processing in Supercritical Fluids, Bordeaux, France, 14–17 Apr. 2002 (2002), Vol. 2, p. 675.

    Google Scholar 

  34. R. P. Bashuk and S. V. Grum-Grzhimailo, in Crystal Spectroscopy, Collected vol. (Nauka, Moscow, 1966), p. 204 [in Russian].

    Google Scholar 

  35. E. G. Valyashko, S. V. Grum-Grzhimailo, I. M. Kutovoi, V. N. Mednikova, and R. K. Sviridova, in Crystal Spectroscopy, Collected vol. (Nauka, Moscow, 1966), p. 211 [in Russian].

    Google Scholar 

  36. D. T. Sviridov, R. K. Sviridova, and Yu. F. Smirnov, Optical Spectra of Transitional Metals in Crystals (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  37. S. Geschwind, P. Kisliuk, M. P. Klein, J. P. Remeika, and D. L. Wood, Phys. Rev. 126, 1684 (1962).

    Article  CAS  Google Scholar 

  38. B. R. Jovanic, J. Luminescence 75, 171 (1997).

    Article  CAS  Google Scholar 

  39. A. Lever, Inorganic Electronic Spectroscopy (Elsevier, Amsterdam, New York, 1985; Mir, Moscow, 1987), Vol. 2.

    Google Scholar 

  40. N. Mironova, V. Skvortsova, A. Smirnov, and L. Cugunov, Opt. Mater. 6, 225 (1996).

    Article  CAS  Google Scholar 

  41. E. Hanamura, Y. Kawabe, H. Takashima, T. Sato, and A. Tomita, J. Nonlinear Opt. Phys. Mater. 12, 467 (2003).

    Article  CAS  Google Scholar 

  42. K. H. Hsu, M. R. Yang, and K. S. Chen, J. Mater. Sci.: Mater. Electronics 9, 283 (1998).

    Article  CAS  Google Scholar 

  43. M. Yu, J. Lin, Y. H. Zhou, and S. B. Wang, Mater. Lett. 56, 1007 (2002).

    Article  CAS  Google Scholar 

  44. Ya. Zhydachevskii, A. Durygin, V. Drozd, A. Suchocki, D. Sugak, and J. Wrobel, J. Phys.: Condens. Matter 20, 095204 (2008).

    Article  Google Scholar 

  45. G. B. Loutts, M. Warren, L. Taylor, R. R. Rakhimov, H. R. Ries, G. Miller, M. A. Noginov, M. Curley, N. Noginova, N. Kikhtarev, H. J. Caulfield, and P. Venkateswarlu, Phys. Rev. B 57, 3706 (1998).

    Article  CAS  Google Scholar 

  46. D. S. McClure, Solid State Phys. 9, 399 (1959).

    Article  CAS  Google Scholar 

  47. K. H. Lee and J. J. H. Crawford, Phys. Rev. B 15, 4065 (1977).

    Article  CAS  Google Scholar 

  48. K. H. Lee and J. H. Crawford, Jr., Phys. Rev. B 19, 3217 (1979).

    Article  CAS  Google Scholar 

  49. B. D. Evans and M. Stapelbroek, Phys. Rev. B 18, 7089 (1978).

    Article  CAS  Google Scholar 

  50. V. S. Kortov, I. I. Mil’man, S. V. Nikiforov, and V. E. Pelenev, Fiz. Tverd. Tela 45, 1202 (2003) [Phys. Solid State 45, 1260 (2003)].

    Google Scholar 

  51. Y. H. Zhou, J. Lin, S. B. Wang, and H. J. Zhang, Opt. Mater. 20, 13 (2002).

    Article  CAS  Google Scholar 

  52. S. P. Feofilov, A. B. Kulinkin, A. B. Kutsenko, and R. I. Zakharchenya, J. Luminescence 76, 217 (1998).

    Article  Google Scholar 

  53. A. Krause and E. Dinjus, J. Supercritical Fluids 39, 362 (2007).

    Article  Google Scholar 

  54. T. Sato, M. Watanabe, J. Smith, T. Adschiri, and K. Arai, J. Supercritical Fluids 28, 69 (2004).

    Article  CAS  Google Scholar 

  55. S. V. Grum-Grzhimailo, Zap. Vses. Min. Obshch. 6(1), 175 (1958).

    Google Scholar 

  56. S. V. Grum-Grzhimailo, Dokl. Akad. Nauk SSSR 60, 1377 (1948).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © Yu.D. Ivakin, M.N. Danchevskaya, O.G. Ovchinnikova, G.P. Murav’eva, V.A. Kreisberg, 2008, published in Sverkhkriticheskie Flyuidy: Teoriya i Praktika, 2008, Vol. 3, No. 4, pp. 11–34.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivakin, Y.D., Danchevskaya, M.N., Ovchinnikova, O.G. et al. The kinetics and mechanism of doped corundum structure formation in an water fluid. Russ. J. Phys. Chem. B 3, 1019–1034 (2009). https://doi.org/10.1134/S199079310907001X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199079310907001X

Key words

Navigation