Russian Journal of Physical Chemistry B

, Volume 3, Issue 5, pp 835–843 | Cite as

A model of the formation of branched polymethyl methacrylates

Chemical Physics of Polymer Materials


A model of formation of macromolecules in the form of a crown of a tree was suggested to describe the character of branching and architecture of branched macromolecules synthesized by radical copolymerization of a monomer with a bifunctional monomer-branching agent in the presence of a chain transfer agent. The branch representing a polymer chain with included branching agent units was accepted as the main structural element of macromolecules. Model parameters were determined from the kinetic characteristics of copolymerization, such as reagent ratio and growth rate and chain transfer constants. Branching and architecture parameters of branched polymethyl methacrylates synthesized at various monomer: branching agent: chain transfer agent ratios were calculated


Macromolecule Tree Crown Geometric Progression Chain Transfer Agent Diacrylate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. O’Brien, A. McKee, D. C. Sherrington, A. T. Slark, and A. Titterton, Polymer. 41, 6027 (2000).CrossRefGoogle Scholar
  2. 2.
    S. Graham, P. A. G. Cormack, and D. C. Sherrington, Macromolecules 38, 86 (2005).CrossRefGoogle Scholar
  3. 3.
    R. Baudry and D. C. Sherrington, Macromolecules 39, 5230 (2006).CrossRefGoogle Scholar
  4. 4.
    T. Sato, M. Hashimoto, M. Seno, and T. Hirano, Eur. Polymer J. 40, 273 (2004).CrossRefGoogle Scholar
  5. 5.
    C. Paulo and J. E. Puskas, Macromolecules 34, 734 (2001).CrossRefGoogle Scholar
  6. 6.
    R. Baudry and D. C. Sherrington, Macromolecules 39, 1455 (2006).CrossRefGoogle Scholar
  7. 7.
    P. A. Costello, I. K. Martun, A. T. Slark, D. C. Sherrington, and A. Titterton, Polymer 43, 245 (2002).CrossRefGoogle Scholar
  8. 8.
    F. Isaure, P. A. G. Cormack, and D. C. Sherrington, J. Mater. Chem. 13, 2701 (2003).CrossRefGoogle Scholar
  9. 9.
    S. V. Kurmaz, V. P. Grachev, I. S. Kochneva, E. O. Perepelitsina, and G. A. Estrina, Vysokomol. Soedin. A 49, 1480 (2007) [Polymer Sci., Ser. 49, 884 (2007)].Google Scholar
  10. 10.
    D. A. Kritskaya, S. V. Kurmaz, and I. S. Kochneva, Vysokomol. Soedin. A 49, 1817 (2007) [Polymer Sci., Ser. 49, 1120 (2007)].Google Scholar
  11. 11.
    J. E. Puskas, Y. Chen, K. Kulbaba, G. Kaszas, and A. Soleymannezhad, J. Polym. Sci. A: Polym. Chem. 44, 1770 (2006).CrossRefGoogle Scholar
  12. 12.
    C. Paulo and J. E. Puskas, Macromolecules 34, 734 (2001).CrossRefGoogle Scholar
  13. 13.
    E. B. Tarabukina, A. A. Shpyrkov, D. V. Potapova, et al., Vysokomol. Soedin. B 47, 2157 (2005) [Polymer Sci., Ser. B 47, 1304 (1997)].Google Scholar
  14. 14.
    C. J. Hawker, R. Lee, and J. M. Frechet, J. Am. Chem. Soc. 113, 4583 (1991).CrossRefGoogle Scholar
  15. 15.
    D. Yan, A. H. E. Muller, and K. Matyjaszewski, Macromolecules 30, 7024 (1997).CrossRefGoogle Scholar
  16. 16.
    H. Mori and A. H. E. Muller, Top Curr. Chem., 1 (2003).Google Scholar
  17. 17.
    M. Gauthier, L. Tichagawa, J. Downey, and S. Gao, Macromolecules 29, 519 (1996).CrossRefGoogle Scholar
  18. 18.
    A. Hult, M. Johansson, and E. Malmstrom, Adv. Polym. Sci. 143, 1 (1999).CrossRefGoogle Scholar
  19. 19.
    G. M. Pavlov, E. V. Korneeva, and E. W. Meijer, Colloid Polym. Sci. 280, 416 (2002).CrossRefGoogle Scholar
  20. 20.
    K. Karatasos, Macromolecules 39, 4619 (2006).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Institute of Energy Problems of Chemical Physics, Chernogolovka BranchRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  2. 2.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations