Russian Journal of Physical Chemistry B

, Volume 3, Issue 3, pp 404–409 | Cite as

The dynamics of water hexamer isomerization

  • E. D. Belega
  • K. A. Tatarenko
  • D. N. Trubnikov
  • E. A. Cheremukhin
Elementary Physicochemical Processes


The dynamics of water hexamer isomerization was analyzed by classic molecular dynamics using TIP4P and TIP5P empirical interaction potentials. Periodic jump transitions between structural isomers occurred as the internal energy of the cluster grew. Structures prevailing over the energy intervals corresponding to the quasi-liquid and quasi-solid cluster phases were determined. The lifetimes of structural isomers were found.


Structural Isomer Isomeric Form Cluster Temperature Classic Molecular Dynamic Initial Kinetic Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    The Water: Structure, State, Solvation. Achievments of Last Years, Ed. by A. M. Kutepov (Nauka, Moscow, 2003) [in Russian].Google Scholar
  2. 2.
    K. Liu, M. G. Brown, C. Carter, et al., Nature 381, 501 (1996).CrossRefGoogle Scholar
  3. 3.
    M. E. Fajardo and S. Tam, J. Chem. Phys. 115, 6807 (2001).CrossRefGoogle Scholar
  4. 4.
    K. Liu, M. G. Brown, and R. J. Saykally, J. Phys. Chem. A 101, 8995 (1997).CrossRefGoogle Scholar
  5. 5.
    M. Losada and S. Leutwyler, J. Chem. Phys. 117, 2003 (2002).CrossRefGoogle Scholar
  6. 6.
    T. James, D. J. Wales, and J. Rojas, Chem. Phys. Lett. 415, 302 (2005).CrossRefGoogle Scholar
  7. 7.
    M. D. Tissandier, S. J. Singer, and J. V. Coe, J. Phys. Chem. A 104, 752 (2000).CrossRefGoogle Scholar
  8. 8.
    S. S. Xantheas, C. J. Burnham, and R. J. Harrison, J. Chem. Phys. 116, 1493 (2002).CrossRefGoogle Scholar
  9. 9.
    W. L. Jorgensen, J. Am. Chem. Soc. 103(2), 335 (1981).CrossRefGoogle Scholar
  10. 10.
    W. L. Jorgensen, J. Chandrasechhar, J. D. Madura, et al., J. Chem. Phys. 79, 926 (1983).CrossRefGoogle Scholar
  11. 11.
    M. W. Mahoney and W. L. Jorgensen, J. Chem. Phys. 112, 8910 (2000).CrossRefGoogle Scholar
  12. 12.
    A. Baba, Y. Hirata, S. Saito, and I. Ohmine, J. Chem. Phys. 106, 3329 (1997).CrossRefGoogle Scholar
  13. 13.
    A. Vegiri and S. C. Farantos, J. Chem. Phys. 98, 4059 (2002).CrossRefGoogle Scholar
  14. 14.
    W. B. Bosma and M. M. Rhodes, J. Chem. Phys. 117, 9286 (2002).CrossRefGoogle Scholar
  15. 15.
    D. Laria, J. Rodriguez, C. Dellago, and D. Chandler, J. Phys. Chem. A 105, 2646 (2001).CrossRefGoogle Scholar
  16. 16.
    A. J. Acevedo, L. M. Caballero, and G. E. Lopez, J. Chem. Phys. 106, 7257 (1997).CrossRefGoogle Scholar
  17. 17.
    L. Verlet, Phys. Rev. 159, 98 (1967).CrossRefGoogle Scholar
  18. 18.
    W. C. Swope, H. C. Andersen, H. Berens, and K. R. Wilson, J. Chem. Phys. 76, 637 (1982).CrossRefGoogle Scholar
  19. 19.
    O. Ore, in Graph Theory, 2nd ed. (Nauka, Moscow, 1980) [in Russian].Google Scholar
  20. 20.
    J. L. Kuo, J. V. Coe, S. J. Singer, et al., J. Chem. Phys. 114, 2527 (2001).CrossRefGoogle Scholar
  21. 21.
    A. G. Kalinichev and S. V. Churakov, Chem. Phys. Lett. 302, 411 (1999).CrossRefGoogle Scholar
  22. 22.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 1: Mechanics (Nauka, Moscow, 1982; Pergamon Press, New York, 1988).Google Scholar
  23. 23.
    S. Kirkpatrick, C. D. Gellat, and M. P. Vecchi, Science 220, 671 (1983).CrossRefGoogle Scholar
  24. 24.
    Y. Koyama, H. Tanaka, G. Gao, and X. C. Zeng, J. Chem. Phys. 121, 7926 (2004).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • E. D. Belega
    • 1
  • K. A. Tatarenko
    • 1
  • D. N. Trubnikov
    • 1
  • E. A. Cheremukhin
    • 1
  1. 1.Faculty of ChemistryMoscow State UniversityMoscowRussia

Personalised recommendations