Russian Journal of Physical Chemistry B

, Volume 3, Issue 3, pp 383–390 | Cite as

Interaction of a glow discharge with a rarefied hypersonic flow in a curvilinear channel

  • S. T. Surzhikov
The XXXII Academic Readings on Cosmonautics. Moscow, January, 2008


A two-dimensional simulation model is used to study the gasdynamic structure of a rarefied hypersonic flow of molecular nitrogen in a curvilinear channel in which the lower surface carries the cathode section of the discharge gap whereas the upper surface serves as the anode. The electrodynamic structure of the glow discharge (the distribution of concentrations of charged species, current density, and electric potential) is examined. It was demonstrated that the burning of a glow discharge in a rarefied hypersonic flow makes it possible to effectively modify the shock wave structure of the flow.


Shock Wave Glow Discharge AIAA Paper Charged Species Computational Mesh 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. G. Chernyi, AIAA Paper 99-4819 (Norfolk, VA, 1999).Google Scholar
  2. 2.
    V. M. Batenin, V. A. Bityurin, A. N. Bocharov, et al., AIAA Paper 2001-0489 (2001).Google Scholar
  3. 3.
    J. S. Shang, S. T. Surzhikov, R. Kimmel, et al., Progr. Aerospace Sci. 41, 642 (2005).CrossRefGoogle Scholar
  4. 4.
    J. S. Shang and S. T. Surzhikov, AIAA J. 43(8), 1633 (2005).CrossRefGoogle Scholar
  5. 5.
    S. T. Surzhikov and J. S. Sheng, Teplofiz. Vys. Temp. 43(1), 21 (2005) [High Temp. 43 (1), 19 (2005)].Google Scholar
  6. 6.
    S. Shang, C. Chang, and S. Surzhikov, AIAA J. 45, 2710 (2007).CrossRefGoogle Scholar
  7. 7.
    J. S. Shang, J. Menart, R. Kimmel, and J. Hayes, AIAA Paper 2006-0764 (2006).Google Scholar
  8. 8.
    L. V. Bezgin, A. B. Vatazhin, O. V. Gus’kov, et al., Izv. Akad. Nauk, Ser. Mekh. Zhidk. Gaza, No. 5, 165 (2007).Google Scholar
  9. 9.
    J. Hirschfelder, Ch. Curtiss, and R. Bird, The Molecular Theory of Gases and Liquids (Wiley, New York, 1954; Inostrannaya Literatura, Moscow, 1961).Google Scholar
  10. 10.
    S. T. Surzhikov, Physical Mechanics of Gas Discharge (Mosk. Gos. Tekh. Univ., Moscow, 2006) [in Russian].Google Scholar
  11. 11.
    V. A. Bashkin, I. V. Egorov, and D. V. Ivanov, Teplofiz. Vys. Temp. 39(1), 115 (2001) [High Temp. 39, 111 (2001)].Google Scholar
  12. 12.
    U. D. Kheiz and R. F. Probstin, Theory of Hypersonic Flows (Inostrannaya Literatura, Moscow, 1962) [in Russian].Google Scholar
  13. 13.
    B. F. Gordiets, A. I. Osipov, and L. A. Shelepin, Kinetic Processes in Gases and Molecular Lasers (Nauka, Moscow, 1980) [in Russian].Google Scholar
  14. 14.
    A. S. Petrusev and S. T. Surzhikov, Khim. Fiz. 25(10), 110 (2006).Google Scholar
  15. 15.
    S. Leonov, V. Bityurin, K. Savelkin, and D. Yarantsev, AIAA Paper 2002-0355 (2001).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Institute for Problems of MechanicsRussian Academy of SciencesMoscowRussia

Personalised recommendations