Russian Journal of Physical Chemistry B

, Volume 3, Issue 2, pp 320–331 | Cite as

Anomalous diffusion in the dynamics of complex processes

  • S. F. Timashev
A.A. Ovchinnikov’s 70th Birthday Anniversary


It is shown that complex signals represented in the form of time series of measured dynamic variables can contain chaotic components whose time changes can be described as anomalous diffusion processes. To determine the parameters of such processes, procedures for the extraction of low-frequency and highest-frequency flicker-noise components, which are flicker-noise spectroscopy characteristics, should be developed. The methodology of the corresponding analysis is demonstrated for the example of magnetoencephalogram signals recorded as responses to the external action of a flickering color stimulus.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. I. Olemskii and D. O. Kharchenko, Self-Organization of Self-Similar Stochastic Systems (R&C Dynamics, Izhevsk, Moscow, 2007) [in Russian].Google Scholar
  2. 2.
    V. V. Uchaikin, Usp. Fiz. Nauk 173, 847 (2003) [Phys. Usp. 46, 821 (2003)].CrossRefGoogle Scholar
  3. 3.
    M. Gitterman, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 62, 6065 (2000).Google Scholar
  4. 4.
    G. M. Zaslavsky, Physics of Chaos in Hamiltonian System (Imperial College Press, London, 1998).Google Scholar
  5. 5.
    J. Klafter, A. Blumen, and M. F. Shlesinger, Phys. Rev. A 35, 3081 (1987).CrossRefGoogle Scholar
  6. 6.
    S. F. Timashev, Flicker-Noise Spectroscopy and Its Application: Information Hidden in Chaotic Signals (Fizmatlit, Moscow, 2007) [in Russian].Google Scholar
  7. 7.
    S. F. Timashev and Yu. S. Polyakov, Fluct. Noise Lett. 7, R15 (2007).CrossRefGoogle Scholar
  8. 8.
    S. F. Timashev, Elektrokhimiya 42(5), 480 (2006) [Russ. J. Elektrochem. 42, 424 (2006)].Google Scholar
  9. 9.
    A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics (Gostekhteorlitizdat, Moscow, 1953; Dover, New York, 1990).Google Scholar
  10. 10.
    I. S. Gradshtein and I. M. Ryzhik, Table of Integrals, Series and Products (Academic, New York, 1980; Gosfizmatlitizdat, Moscow, 1962).Google Scholar
  11. 11.
    A. Zoia, A. Rosso, and M. Kardar, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 76, 021116 (2007).Google Scholar
  12. 12.
    J. Bhattacharya, K. Watanabe, and S. Shimojo, Int. J. Bifurcation Chaos 14, 2701 (2004).CrossRefGoogle Scholar
  13. 13.
    K. Watanabe, T. Imada, K. Nihei, and S. Shimojo, Neurophys. Basic Clin. Neuro Rep. 13(16), 1 (2002).Google Scholar
  14. 14.
    R. M. Yulmetyev, D. G. Yulmetyeva, P. Hanggi, et al., Zh. Eksp. Teor. Fiz. 131(4), 729 (2007) [JETP 104, 644 (2007)].Google Scholar
  15. 15.
    R. M. Yulmetyev, P. Hanggi, D. G. Yulmetyeva, et al., Physica A (Amsterdam) 383, 443 (2007).Google Scholar
  16. 16.
    S. F. Timashev, R. M. Yul’met’ev, S. A. Demin, et al., Almanakh Klinich. Med. 17, 233 (2008).Google Scholar
  17. 17.
    A. A. Ovchinnikov, S. F. Timashev, and A. A. Belyi, Kinetics of Diffusion Controlled Chemical Processes (Khimiya, Moscow, 1986; Nova Science, Commack, New York, 1989).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Karpov Research Institute of Physical ChemistryMoscowRussia

Personalised recommendations