Russian Journal of Physical Chemistry B

, Volume 3, Issue 2, pp 185–190 | Cite as

Kinetics of the oxidation of model toxicants during photolysis of nitrites and nitrates in an aqueous medium

  • N. I. Zaitseva
  • I. S. Baikova
  • V. O. Shvydkii
  • R. R. Borodulin
  • E. V. Shtamm
  • Yu. I. Skurlatov
Effect of External Factors on Physicochemical Transformations


Quantitative toxicology methods with the use of the enzymic activity of luminescent bacteria and the reproductive function of Tetrahymena pyriformis infusoria as test functions were employed to study the kinetics of the detoxication of model toxicants during photolysis of nitrite and nitrate. The model objects were the para-nitrosodimethylaniline (p-NDA) dye and a 2000-fold diluted solution of black liquor, which is formed during the sulfate boiling of cellulose. It was established that, irrespective of the wavelength of photolyzing UV radiation, be it 220 or 365 nm, the reactive product of NO 2 and NO 3 photolysis is the hydroxyl radical, which causes a symbatic decrease in the concentration of the toxicant and its toxicity. It was demonstrated that nitrite and nitrate ions can be used as initiators of free radicals during the destructive UV-light-induced purification of wastewater.


Nitrite Photolysis Paper Mill Black Liquor Luminescent Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ya. L. Kostyukovskii and D. B. Melamid, Usp. Khim. 57, 625 (1988).Google Scholar
  2. 2.
    M. N. Bugreeva, A. Ya. Smirnova, L. N. Strogonov, and I. V. Moiseeva, Vestn. Voronezh. Univ., Ser. Geologiya, No. 12, 212 (2001).Google Scholar
  3. 3.
    A. Ya. Sychev, S. O. Travin, G. G. Duka, and Yu. I. Skurlatov, Catalytic Reactions and Preservation of the Environment (Shtiintsa, Chisinau, 1983) [in Russian].Google Scholar
  4. 4.
    Yu. I. Skurlatov, G. G. Duka, and A. Misiti, An Introduction in Ecological Chemistry (Vysshaya Shkola, Moscow, 1994) [in Russian].Google Scholar
  5. 5.
    P. Bilski, C. F. Chignell, J. Szychlinski, et al., J. Am. Chem. Soc. 114, 549 (1992).CrossRefGoogle Scholar
  6. 6.
    I. Wagner, H. Strehlow, and G. Busse, Z. Phys. Chemie. Neue Folge 123, 1 (1980).Google Scholar
  7. 7.
    M. Daniels, R. V. Meyers, and R. V. Belardo, J. Phys. Chem. 72, 389 (1968).CrossRefGoogle Scholar
  8. 8.
    U. Shuali, M. Ottolenghi, J. Rabani, and Z. Yelin, J. Phys. Chem. 78, 3445 (1969).CrossRefGoogle Scholar
  9. 9.
    F. Barat, L. Gilles, and J. Sutton, J. Am. Chem. Soc. A 92, 1982 (1970).CrossRefGoogle Scholar
  10. 10.
    N. S. Bayliss and R. B. Bucat, Aust. J. Chem. 28, 1865 (1975).CrossRefGoogle Scholar
  11. 11.
    R. G. Zepp, J. Hoigne, and H. Bader, Environ. Sci. Technol. 21, 443 (1987).CrossRefGoogle Scholar
  12. 12.
    J. Mack and J. R. Bolton, J. Photochem. Photobiol. A: Chem. 128, 1 (1999).CrossRefGoogle Scholar
  13. 13.
    S. J. Strickler and M. Kasha, J. Am. Chem. Soc. 85, 2899 (1963).CrossRefGoogle Scholar
  14. 14.
    A. Potlevi and A. Treinin, J. Phys. Chem. 69, 2645 (1965).CrossRefGoogle Scholar
  15. 15.
    H. J. Maria, J. R. McDonald, and S. P. VcGlynn, J. Am. Chem. Soc. 95, 1050 (1973).CrossRefGoogle Scholar
  16. 16.
    A. J. Struchler and V. Kasha, Molecular Orbitals in Chemistry Physics and Biology (Academic, New York, 1964).Google Scholar
  17. 17.
    Yu. I. Skurlatov, L. S. Ernestova, E. V. Vichutinskaya, et al., Khim. Fiz. 16(11), 16 (1997).Google Scholar
  18. 18.
    E. V. Shtamm, L. N. Shishkina, N. B. Kozlova, et al., Vodosnabzh. San. Tekhn. 16(10), 18 (1997).Google Scholar
  19. 19.
    K. Ito, Y. Ariyoshi, F. Tanabiki, and H. Sunabara, Anal. Chem. 63, 273 (1991).CrossRefGoogle Scholar
  20. 20.
    Yu. A. Revazova, L. G. Doner’yan, V. S. Danilov, et al., Methodological Recommendations No. 01.019-07 (Fed. Centre of Hygiena and Epidemiol., Moscow, 2007) [in Russian].Google Scholar
  21. 21.
    V. N. Kuz’mich, S. A. Sokolova, and A. N. Krainyukova, Guide on Decision of Biotesting Method of Water Toxicity, Ground Sediments, Soiled Matters and Boring Solutions (REFIA, NIA-Priroda, Moscow, 2002) [in Russian].Google Scholar
  22. 22.
    Methods of Water Biotesting, Ed. by A. N. Krainyukova (OIKhF AN SSSR, Chernogolovka, 1988) [in Russian].Google Scholar
  23. 23.
    N. A. Loshadkin, V. D. Gladkikh, V. A. Goldenkov, et al., Ross. Khim. Zh. 46(6), 63 (2002).Google Scholar
  24. 24.
    N. S. Zhmur, Metodika opredeleniya Toxicity of the Water and Water Extractions from Grounds, Sediments of Waste Water, Waste on Mortality and Change of Ceriodaphny Fertility (Akvaros, Moscow, 2001) [in Russian].Google Scholar
  25. 25.
    E. V. Shtamm, B. N. Frog, Yu. I. Skurlatov, et al., Acta Hydrochim. Hydrobiol. 30(5–6), 256 (2002).CrossRefGoogle Scholar
  26. 26.
    V. O. Shvydkii, N. I. Zaitseva, Yu. I. Skurlatov, et al., Khim. Fiz. 19(12), 16 (2000).Google Scholar
  27. 27.
    L. S. Ernestova, E. V. Shtamm, L. V. Semenyak, et al., in Fate of Pesticides and Chemicals in the Environment, (Gidrometeoizdat, Leningrad, 1991; Wiley, New York, 1992).Google Scholar
  28. 28.
    A. K. Pikaev and S. A. Kabakchi, Reactivities of the Primary Radiolytic Products of Water, Handbook (Energoizdat, Moscow, 1982) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • N. I. Zaitseva
    • 1
  • I. S. Baikova
    • 2
  • V. O. Shvydkii
    • 2
  • R. R. Borodulin
    • 2
  • E. V. Shtamm
    • 2
  • Yu. I. Skurlatov
    • 1
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Emanuel Institute of Biochemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations