Russian Journal of Physical Chemistry B

, Volume 2, Issue 2, pp 289–291 | Cite as

Heterogeneous reactions of H and O2 with solid alkanes

  • A. V. Ivanov
  • A. Yu. Zasypkin
  • A. V. Stepanov
  • Yu. M. Gershenzon
Reactivity, Kinetics of Chemical Reactions, Catalysis


The paper describes a new source of surface organic radicals whose special feature is a low rate of the initiation of alkyl radicals in reactions of H atoms with the surface of alkanes. A special reactor design was used to accumulate radicals at room temperature and observe alkoxyl radicals RO by the EPR method. For this purpose, alkanes were deposited on aerosil and placed into an EPR cavity. Thanks to the large area of aerosil loads (∼103 cm2), we were able to obtain a stable signal corresponding to a ∼1017 total amount of alkoxyl radicals (the degree of surface coverage ∼0.1%). When O2 was introduced into the reactor in concentrations of 1015–1016 cm−3, a sharp decrease in the signal from surface organic radicals was observed. The process was described as the first-order (RO) s + O2 → HO2 + ketone reaction with a 1.7 × 10−17 cm3 s−1 rate constant.


Alkane Aerosil Microwave Discharge Alkoxyl Radical Cyclic Hydrocarbon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Kanakidou, J. H. Seinfeld, S. N. Pandis, et al., Atmos. Chem. Phys. 5(4), 1053 (2005).CrossRefGoogle Scholar
  2. 2.
    D. J. Donaldson and V. Vaida, Chem. Rev. 106(4), 1445 (2006).CrossRefGoogle Scholar
  3. 3.
    M. J. Molina et al., J. Geophys. Res. Atmos. 31, L22104 (2004).Google Scholar
  4. 4.
    B. A. Gorbunov, A. Baklanov, et al., J. Aerosol Sci. 32(2), 199 (2001).CrossRefGoogle Scholar
  5. 5.
    J. A. de Gouer and R. Lovejoy, Geophys. Res. Lett. 25(6), 931 (1998).CrossRefGoogle Scholar
  6. 6.
    A. K. Bertram, A. V. Ivanov, M. Hunter, et al., J. Phys. Chem. A 105, 9415 (2001).CrossRefGoogle Scholar
  7. 7.
    Y. Rudich, Chem. Rev. 103(12), 5097 (2003).CrossRefGoogle Scholar
  8. 8.
    T. L. Eliason, D. J. Saloso, et al., Atmos. Environ. 37(16), 2207 (2004).CrossRefGoogle Scholar
  9. 9.
    A. V. Stepanov, D. V. Shestakov, R. G. Remorov, et al., Khim. Fiz. 23(11), 51 (2004).Google Scholar
  10. 10.
    A. V. Stepanov, S. S. Kimmel’fel’d, D. V. Shestakov, et al., Khim. Fiz. 25(5), 25 (2006).Google Scholar
  11. 11.
    R. Atkinson, Int. J. Chem. Kinet. 29, 99 (1997).CrossRefGoogle Scholar
  12. 12.
  13. 13.
    A. V. Eletskii, in Physical Values: A Handbook, Ed. by I. S. Grigor’ev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991), p. 375 [in Russian].Google Scholar
  14. 14.
    A. V. Stepanov, D. V. Shestakov, R. G. Remorov, et al., Khim. Fiz. 23(12), 46 (2004).Google Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  • A. V. Ivanov
    • 1
  • A. Yu. Zasypkin
    • 2
  • A. V. Stepanov
    • 2
  • Yu. M. Gershenzon
    • 2
  1. 1.University of CaliforniaSan DiegoUSA
  2. 2.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations