The Effective Ionization of Air and Oxygen in a Near-Critical Electric Field at High Pressures

  • A. F. Aleksandrov
  • V. L. Bychkov
  • L. P. Grachev
  • I. I. Esakov
  • A. Yu. Lomteva
Elementary Physicochemical Processes
  • 27 Downloads

Abstract

The effective ionization of air and oxygen at early stages of electric discharge development at medium and high pressures is analyzed. Ionization in an applied field with the participation of background electrons, electron sticking to and detachment from oxygen atoms and molecules, and recharging and conversion of negative ions is considered. The dependence of ion-molecular processes on external field is taken into account. The effective ionization value is shown to be different in constant and microwave fields. The effective air ionization values obtained in a microwave field are in agreement with the experimental data. It is shown that background electrons determine the possibility of effective ionization, whereas conversion processes determine the existence of a threshold E/N value, where E is the electric field strength and N is the density of neutral particles.

Keywords

Glow Discharge Direct Ionization Homogeneous Part Ionization Threshold Interelectrode Distance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. L. Bychkov, L. P. Grachev, I. I. Esakov, et al., Preprint of Keldysh Inst. of Applied Mathematics, Russ. Acad. Sci., St. Petersburg, 1997, no. 27.Google Scholar
  2. 2.
    V. L. Bychkov, A. V. Bychkov, and I. B. Timofeev, Zh. Tekh. Fiz. 49(1), 27 (2004) [Tech. Phys. 49 (1), 128 (2004)].Google Scholar
  3. 3.
    Yu. P. Raizer, Physics of Gas Discharge (Nauka, Moscow, 1992) [in Russian].Google Scholar
  4. 4.
    A. Kh. Mnatsakanyan and G. V. Naidis, Plasma Chemistry: Collection of Papers, Ed. by B. M. Smirnov (Energoizdat, Moscow, 1987) [in Russian].Google Scholar
  5. 5.
    V. Bychkov, A. Yu. Lomteva, I. Esakov, et al., in Proceedings of 44th AIAA Aerospace Science Meeting and Exhibition (Reno, Nevada, 2006), AIAA-2006-0793.Google Scholar
  6. 6.
    H. W. Ellis, R. Y. Pai, E. W. McDaniel, et al., Atom. Data Nucl. Data Tables 17(3), 182 (1976).CrossRefGoogle Scholar
  7. 7.
    H. S. W. Massey, Negative Ions (Cambridge Univ. Press, Cambridge, 1976; Mir, Moscow, 1979).Google Scholar
  8. 8.
    I. T. Mayhan and R. L. Fante, J. Appl. Phys. 42(13), 5362 (1971).CrossRefGoogle Scholar
  9. 9.
    M. A. Herlin and S. B. Brown, Phys. Rev. 74(11), 1650 (1948).CrossRefGoogle Scholar
  10. 10.
    R. Geballe and M. A. Harrison, Phys. Rev. 91(1), 1 (1953).CrossRefGoogle Scholar
  11. 11.
    Yu. A. Lupan, Zh. Tekh. Fiz. 46(11), 2321 (1976).Google Scholar
  12. 12.
    N. A. Armand, V. D. Peretrukhin, S. A. Rogashkov, et al., Radiophysics: Collection of Papers (Mosk. Radiotekh. Inst., Akad. Nauk SSSR, Moscow, 1991), p. 122 [in Russian].Google Scholar
  13. 13.
    N. A. Dyatko, I. V. Kochetov, and A. P. Napartovich, Microwave Discharge in Wave Fields: Collection of Papers (Inst. Prikl. Fiz., Akad. Nauk SSSR, Gorky, 1988), p. 9 [in Russian].Google Scholar
  14. 14.
    A. D. MacDonald, Microwave Breakdown in Gases (Wiley, New York, 1966; Inostrannaya Literatura, Moscow, 1969).Google Scholar
  15. 15.
    H. Raether, Electron Avalanches and Breakdown in Gases (Butterworths, London, 1964; Mir, Moscow, 1968).Google Scholar
  16. 16.
    S. I. Yakovlenko, in Encyclopedia of Low-Temperature Plasma (Fizmatlit, Moscow, 2005), Vol. 11–4, p. 355 [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • A. F. Aleksandrov
    • 1
  • V. L. Bychkov
    • 1
  • L. P. Grachev
    • 2
  • I. I. Esakov
    • 2
  • A. Yu. Lomteva
    • 1
  1. 1.Moscow State UniversityMoscowRussia
  2. 2.Moscow Radiotechnical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations