Russian Journal of Physical Chemistry B

, Volume 1, Issue 6, pp 581–587 | Cite as

On the mechanism of hotspot initiation of detonation

  • I. V. Kuz’mitskii
Combustion and Explosion


A mechanism of the initiation of hotspots in heterogeneous solid high explosives was considered. It was demonstrated that the growth of hotspots may be associated with the propagation of a thermal wave in the deflagration regime only at an early stage of the process. The growth at later stages occurs in the reactive shock regime, a finding that renders the assumption about a very high deflagration wave velocity redundant.


Energy Release Detonation Wave Thermal Wave Critical Radius Shock Wave Front 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Eyring, R. E. Powell, G. H. Duffey, et al., Chem. Rev. 45(1), 69 (1949).CrossRefGoogle Scholar
  2. 2.
    V. Yu. Klimenko, Khim. Fiz. 17, 11 (1998).Google Scholar
  3. 3.
    C. M. Tarver, S. K. Chidester, and A. L. Nichols, III, J. Phys. Chem. 100(14), 5794 (1996).CrossRefGoogle Scholar
  4. 4.
    C. M. Tarver and A. L. Nichols, III, in Proc. 11th Int. Detonation Symposium (Snowmass Village, 1998), p. 281.Google Scholar
  5. 5.
    C. M. Tarver, J. W. Kury, and R. D. Breithaupt, J. Appl. Phys. 82(8), 3771 (1997).CrossRefGoogle Scholar
  6. 6.
    L. A. Gatilov and I. V. Kuzmitskii, Chem. Phys. Rep. 19(5), 959 (2001).Google Scholar
  7. 7.
    L. A. Gatilov and I. V. Kuz’mitskii, Khim. Fiz. 21(3), 86 (2002).Google Scholar
  8. 8.
    S. N. Lubyatinsky and B. G. Loboiko, in Proc. 11th Int. Detonation Symposium (Snowmass Village, 1998), p. 11.Google Scholar
  9. 9.
    K. F. Grebenkin, M. M. Gorshkov, A. L. Zherebtsov, et al., in Proc. of Int. Conf “V Khariton Scientific Readings” (Vserossiiskii Nauchno-Issledovatel’skii Inst. Eksperimental’noi Fiziki, Sarov, 2003), p. 198 [in Russian].Google Scholar
  10. 10.
    K. F. Grebenkin, A. L. Zherebtsov, and M. V. Taranik, Fiz. Goreniya Vzryva 41(5), 100 (2005).Google Scholar
  11. 11.
    C. L. Mader, Numerical Modeling of Explosives and Propellants, 2nd ed. (CRC, Boca Raton, 1998), p. 439.Google Scholar
  12. 12.
    P. P. Volosevich, S. P. Kurdyumov, L. N. Busurina, and V. P. Krus, Zh. Vychisl. Mat. Mat. Fiz. 3(1) (1963).Google Scholar
  13. 13.
    P. M. Krishenik and K. G. Shkadinskii, Dokl. Akad. Nauk 392(6), 761 (2003).Google Scholar
  14. 14.
    L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd ed. (Nauka, Moscow, 1986; Pergamon Press, Oxford, 1987).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • I. V. Kuz’mitskii
    • 1
  1. 1.Russian Federal Nuclear Center (All-Russia Research Institute of Experimental Physics)SarovRussia

Personalised recommendations