Russian Journal of Physical Chemistry B

, Volume 1, Issue 6, pp 528–536 | Cite as

Photochemical transformations of the azidonitroxyl radical in glassy media

Reactivity, Chemical Kinetics, and Catalysis
  • 26 Downloads

Abstract

The kinetic characteristics of the photochemical decomposition of the azido group of 3-azido-4-hydroxyimino-2,2,6,6-tetramethylpiperidine-1-oxyl in solid matrices at 293 and 77 K were studied. It was revealed that the presence of the nitroxyl radical center in the molecule is responsible for the realization of the radical mechanism of the decomposition of the azido group. The values of the quantum yield φ of the decomposition of the azido group were found to be 0.056 in toluene at 77 K, 0.14 in polystyrene at 77 K, and 0.16 in polystyrene at 293 K. It was demonstrated that the number of radicals remaining after photolysis correlates with the molecular mobility of the medium.

Keywords

Quantum Yield Nitroxyl Nitroxyl Radical Matrix Radical Azido Group 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. D. Lewis and W. H. Saunders, J. Am. Chem. Soc. 90(25), 7031 (1968).CrossRefGoogle Scholar
  2. 2.
    E. P. Kyba and R. A. Abramovich, J. Am. Chem. Soc. 102(2), 735 (1980).CrossRefGoogle Scholar
  3. 3.
    A. I. Bogatyreva and A. L. Buchachenko, Kinet. Katal. 12(6), 1380 (1971).Google Scholar
  4. 4.
    A. D. Kalugina, Abstracts of Papers, XXIII All-Russia Workshop of Young Scientists on Chemical Kinetics (2005), p. 33.Google Scholar
  5. 5.
    M. Ya. Mel’nikov, V. I. Pergushov, and Yu. A. Vainshtein, Vestn. Mosk. Univ., Ser. 2: Khim. 46(3), 168 (2005).Google Scholar
  6. 6.
    L. A. Krinitskaya and L. B. Volodarskii, Izv. Akad. Nauk SSSR, Ser. Khim. 7, 1619 (1984).Google Scholar
  7. 7.
    K. C. Kurien, J. Chem. Soc. B 62(10), 2081 (1971).CrossRefGoogle Scholar
  8. 8.
    S. Ya. Pshezhetskii, A. G. Kotov, V. K. Milinchuk, et al., EPR of Free Radicals in Chemistry (Khimiya, Moscow, 1972) [in Russian].Google Scholar
  9. 9.
    D. J. Henderson and J. E. Willard, J. Am. Chem. Soc. 91(12), 3014 (1969).CrossRefGoogle Scholar
  10. 10.
  11. 11.
    R. M. Moriarty and R. C. Reardon, Tetrahedron 26(5), 1379 (1970).CrossRefGoogle Scholar
  12. 12.
    R. M. Moriarty and P. J. Serridge, J. Am. Chem. Soc. 93(6), 1534 (1971).CrossRefGoogle Scholar
  13. 13.
    R. Abramovich and E. P. Kuba, J. Am. Chem. Soc. 93(6), 1537 (1971).CrossRefGoogle Scholar
  14. 14.
    W. H. Saunders and E. A. Caress, J. Am. Chem. Soc. 86(5), 861 (1964).CrossRefGoogle Scholar
  15. 15.
    R. M. Moriarty and R. Rahman, Tetrahedron 25(10), 2877 (1965).CrossRefGoogle Scholar
  16. 16.
    C. Richards, C. Meredith, Kim SeunG-Joo, et al., J. Chem. Phys. 100(1), 481 (1994).CrossRefGoogle Scholar
  17. 17.
    J. Arenas, J. Otero, A. Sanchez-Galvez, et al., J. Phys. Chem. A 102(7), 1146 (1998).CrossRefGoogle Scholar
  18. 18.
    J. F. Arenas, J. C. Otero, A. Sanchez-Galvez, and J. Soto, J. Mol. Struct. 410–411, 451 (1997).Google Scholar
  19. 19.
    M. T. Nguyen, D. Sengupta, and T.-K. Ha, J. Phys. Chem. 100(26), 6499 (1996).CrossRefGoogle Scholar
  20. 20.
    E. L. Step, A. L. Buchachenko, and N. J. Turro, J. Am. Chem. Soc. 116(12), 5462 (1994).CrossRefGoogle Scholar
  21. 21.
    A. L. Buchachenko, E. L. Step, V. L. Ruban, and N. J. Turro, Chem. Phys. Lett. 223(5–6), 315 (1995).CrossRefGoogle Scholar
  22. 22.
    A. L. Buchachenko and V. L. Berdinsky, Chem. Phys. Lett. 242(1–2), 43 (1995).CrossRefGoogle Scholar
  23. 23.
    A. L. Buchachenko and V. L. Berdinsky, J. Phys. Chem. 100(47), 18292 (1996).Google Scholar
  24. 24.
    M. J. Travers, D. C. Cowles, E. P. Clifford, et al., J. Chem. Phys. 111(12), 5349 (1999).CrossRefGoogle Scholar
  25. 25.
    C. Richards, C. Meredith, H. F. Schaefer, et al., J. Chem. Phys. 100(1), 481 (1994).CrossRefGoogle Scholar
  26. 26.
    M. T. Nguyen, D. Sengupta, and T.-K. Ha, J. Phys. Chem. 100(16), 6499 (1996).CrossRefGoogle Scholar
  27. 27.
    G. Smolinsky, E. Wasserman, and W. A. Yager, J. Am. Chem. Soc. 84(16), 3220 (1962).CrossRefGoogle Scholar
  28. 28.
    E. Wasserman, G. Smolinsky, and W. A. Yager, J. Am. Chem. Soc. 86(15), 3166 (1964).CrossRefGoogle Scholar
  29. 29.
    R. F. Ferrante, J. Chem. Phys. 86(1), 25 (1987).CrossRefGoogle Scholar
  30. 30.
    R. Klima and A. Gudmundsdottir, J. Photochem. Photobiol., A 162(2–3), 239 (2004).CrossRefGoogle Scholar
  31. 31.
    V. V. Kondrat’ev, Cleavage Energies of Chemical Bonds, Ionization Potential, and Electron Affinity (Nauka, Moscow, 1974) [in Russian].Google Scholar
  32. 32.
    V. I. Trofimov and I. I. Chkheidze, Khim. Vys. Energ. 1(4), 324 (1967).Google Scholar
  33. 33.
    S. Ya. Pshezhetskii, A. G. Kotov, and G. V. Pukhal’skaya, Khim. Vys. Energ. 1(46), 536 (1967).Google Scholar
  34. 34.
    V. I. Pergushov and M. Ya. Mel’nikov, Khim. Vys. Energ. 27(1), 65 (1993).Google Scholar
  35. 35.
    N. Yu. Osokina, E. N. Serapegina, and M. Ya. Mel’nikov, Dokl. Akad. Nauk 130(1), 77 (1993).Google Scholar
  36. 36.
    A. C. Ling and J. E. Willard, J. Phys. Chem. 72(6), 1918 (1968).CrossRefGoogle Scholar
  37. 37.
    R. Richert and M. Yan, J. Phys. Chem. B 107(4), 895 (2003).CrossRefGoogle Scholar
  38. 38.
    K. Earle, J. Moscicki, A. Polimeno, and J. Freed, J. Chem. Phys. 106(24), 9996 (1997).CrossRefGoogle Scholar
  39. 39.
    L. J. Berliner, Spin Labeling (Academic, New York, 1976; Mir, Moscow, 1979).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  1. 1.Faculty of ChemistryMoscow State UniversityLeninskie gory, MoscowRussia

Personalised recommendations