Russian Journal of Physical Chemistry B

, Volume 1, Issue 4, pp 261–291 | Cite as

Theory of surface chemical reactivity

  • R. A. van Santen
  • M. Neurock
Special Issue: Theoretical Modeling of Energetics and Kinetics of Chemical Processes on Transition Metal Surfaces


Fundamental reactivity concepts of relevance to the reactivity of transition metal surfaces are reviewed using elementary quantum-chemical concepts. The Newns-Anderson tight binding model of chemisorption is presented and subsequently used to outline the electronic structure characteristics of weak versus strong chemisorption. Fundamental concepts such as electron localization and surface complex embedding energies are defined and used to help explain surface reactivity. The emphasis here is on establishing an understanding of the surface chemical bond as a function of adatom coordination number, degree of coordinative unsaturation of the surface atoms and electron occupation of the d-type valence electron band. We derive from formal chemisorption theory the important relationships that exist between measured chemisorption properties and the average position of the d-valence electron band. The Newns-Anderson model is also used to show the relationship that exists between the d-band center and the coordinative unsaturation of the metal surface atoms. The general conclusion is that for Group VIII metals the shift of the average energy of the surface local density of states correlates with the strength of the interaction of the surface atoms with the metal atoms next to the surface layer. The same model is then used to analyze the Shustorovich bond order conservation model. The BOC or its modern version UBI-QEP is found to be consistent with a surface interaction potential comprised of a two-body repulsive term along with a constant attractive interaction independent of the number of coordinating atoms. The concepts of weak and strong chemisorption provide a very good basis for the subsequent analysis of the Brønsted-Eyring-Polanyi (BEP) relation. The extreme values of the BEP proportionality constant are related to the concept of loose and tight transition states. This proportionality constant between transition state energy and reaction energy can be expressed in parameters from the Newns-Anderson model by identifying loose transition states with intermediates in which the bond to be activated has not yet been broken, whereas in tight transition states this bond can be considered to be broken. We conclude the paper with an analysis of surface reconstruction. The power of the surface-molecule complex view of chemisorption will be quite apparent. The paper has an extensive introductory section to relate the topics of the four sections that follow with important classical catalytic notions.


Surface Atom Bond Order Transition State Energy Group Viii Metal Electron Occupation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Clark, The Theory of Adsorption and Catalysis (Academic, New York, 1970).Google Scholar
  2. 2.
    G. A. Somorjai, Introduction to Surface Chemistry and Catalysis (Wiley, New York, 1994).Google Scholar
  3. 3.
    M. Boudart, Adv. Catal. 20, 153 (1969).Google Scholar
  4. 4.
    M. Che and C. O. Bennet, Adv. Catal. 36, 55 (1989).Google Scholar
  5. 5.
    C. R. Henry, C. Chapon, S. Giorgio, and C. Goyhenex, in Chemisorption and Reactivity on Supported Clusters and Thin Films, Ed. by R. M. Lambert and G. Pacchioni (Kluwer, 1997), pp. 117–152.Google Scholar
  6. 6.
    J. H. Sinfelt, J. L. Carter, and D. J. C. Yates, J. Catal. 24, 283 (1972).CrossRefGoogle Scholar
  7. 7.
    W. M. H. Sachtler and R. A. van Santen, Adv. Catal. 26, 69 (1977).CrossRefGoogle Scholar
  8. 8a.
    B. Hammer and J. K. Nørskov, Adv. Catal. 45, 71 (2000).Google Scholar
  9. 8b.
    A. Grosz, Top. Catal. 37, 29 (2006).CrossRefGoogle Scholar
  10. 9.
    M. Mavrikakis, B. Hammer, and J. K. Nørskov, Phys. Rev. Lett. 81, 2819 (1998).CrossRefGoogle Scholar
  11. 10.
    E. M. Shustorovich, Surf. Sci. Rep. 6, 1 (1986).CrossRefGoogle Scholar
  12. 11.
    R. Hoffmann, Solids and Surfaces (VCH, 1988).Google Scholar
  13. 12.
    J. K. Nørskov and N. D. Lang, Phys. Rev. B: Condens. Matter 12, 2136 (1980); J. K. Nørskov, Phys. Rev. B: Condens. Matter 26, 2875 (1982).Google Scholar
  14. 13.
    B. Hammer, Top. Catal. 37, 3 (2006).CrossRefGoogle Scholar
  15. 14.
    M. J. Puska, R. M. Nieminen, and M. Manninen, Phys. Rev. B: Condens. Matter 24, 3037 (1980).Google Scholar
  16. 15.
    D. M. Newns, Phys. Rev. 178, 1123 (1969); P. W. Anderson, Phys. Rev. 124, 41 (1961).CrossRefGoogle Scholar
  17. 16.
    M. Neurock et al., to appear.Google Scholar
  18. 17.
    E. M. Shustorovich, J. Phys. Chem. B 1, 307 (2007).Google Scholar
  19. 18.
    L. P. Hammett, J. Am. Chem. Soc. 59, 96 (1937).CrossRefGoogle Scholar
  20. 19a.
    R. A. van Santen and M. Neurock, Catal. Rev. Sci. Eng. 37, 557 (1993).CrossRefGoogle Scholar
  21. 19b.
    R. A. van Santen and J. W. Niemantsverdriet, Chemical Kinetics and Catalysis (Plenum, New York, 1995), pp. 199, 230.Google Scholar
  22. 20.
    R. A. van Santen and M. Neurock, Molecular Heterogeneous Catalysis (Wiley-VCH, 2006).Google Scholar
  23. 21.
    O. K. Rice, Statistical Mechanics: Thermodynamics and Kinetics (W.H. Freeman, 1967).Google Scholar
  24. 22.
    P. Sabatier, La Catalyse en Chimie Organique (Libraire Polytechnique, Paris, 1913).Google Scholar
  25. 23.
    A. M. Argo, J. F. Odzak, F. S. Lai, and B. C. Gates, Nature (London) 415, 623 (2002).CrossRefGoogle Scholar
  26. 24.
    G. Wulff, Z. Kristallogr. 34, 449 (1901).Google Scholar
  27. 25.
    J. Wang, C. Y. Fan, K. Jacobi, and G. Ertl, Surf. Sci. 481, 113 (2001).CrossRefGoogle Scholar
  28. 26a.
    M. Neurock and D. Mei, Top. Catal. 20, 1 (2002); C. G. M. Hermse, F. Frechard, A. P. van Bavel, et al., J. Chem. Phys. 118, 7081 (2003).CrossRefGoogle Scholar
  29. 26b.
    B. P. Crawford and P. Hu, J. Chem. Phys. 124, 044705 (2006).Google Scholar
  30. 27.
    F. Seitz, The Modern Theory of Solids (McGraw-Hill, New York, 1940).Google Scholar
  31. 28.
    R. A. van Santen, Theoretical Heterogeneous Catalysis (World Sci., Singapore, 1991).Google Scholar
  32. 29.
    F. Fréchard, R. A. van Santen, A. Siokon, et al., J. Chem. Phys., p. 8124 (1999).Google Scholar
  33. 30.
    W. Biemolt, Quantum Chemical Studies in Catalysis: Thesis (Eindhoven, 1995).Google Scholar
  34. 31.
    M. T. M. Koper, T. E. Shubina, and R. A. van Santen, J. Phys. Chem. B 106, 686 (2002).CrossRefGoogle Scholar
  35. 32.
    N. Lopez and J. K. Nørskov, Surf. Sci. 477, 59 (2001).CrossRefGoogle Scholar
  36. 33.
    N. Mott, Metal-Insulator Transition (Taylor and Fransis, New York, 1974).Google Scholar
  37. 34a.
    E. M. Shustorovich and H. Sellers, Surf. Sci. Rep. 31, 1 (1998).CrossRefGoogle Scholar
  38. 34b.
    H. Sellers and E. M. Shustorovich, Surf. Sci. 504, 167 (2002).CrossRefGoogle Scholar
  39. 35.
    L. Pauling, The Nature of the Chemical Bond and the Structure of Molecules and Crystals (Cornell University Press, Ithaca, 1939).Google Scholar
  40. 36.
    G. S. Hammond, J. Am. Chem. Soc. 77, 334 (1955).CrossRefGoogle Scholar
  41. 37.
    B. S. Bunnik and G. J. Kramer, unpublished.Google Scholar
  42. 38a.
    Q. Ge and M. Neurock, J. Am. Chem. Soc. 126, 1551 (2004).CrossRefGoogle Scholar
  43. 38b.
    A. Eichler and J. Hafner, Chem. Phys. Lett. 343, 383 (2004).CrossRefGoogle Scholar
  44. 39.
    J. K. Nørskov, T. Bligaard, A. Logadottir, et al., J. Catal. 209, 275 (2002).CrossRefGoogle Scholar
  45. 40.
    P. van Beurden and G. J. Kramer, J. Chem. Phys. 121, 2317 (2004).CrossRefGoogle Scholar
  46. 41.
    J. K. Nørskov, Surf. Sci. 299/300, 690 (1994).CrossRefGoogle Scholar
  47. 42.
    F. Fréchard and R. A. van Santen, Surf. Sci. 407, 200 (1998).CrossRefGoogle Scholar
  48. 43.
    A. B. Hayden, P. Pervan, and D. P. Woordruff, Surf. Sci. 306, 99 (1994).CrossRefGoogle Scholar
  49. 44.
    J. E. Kirsch and S. Harris, Surf. Sci. 522, 125 (2003).CrossRefGoogle Scholar
  50. 45.
    I. Ciobica and R. A. van Santen, unpublished.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  1. 1.Eindhoven University of TechnologyThe Netherlands
  2. 2.University of VirginiaCharlottesvilleUSA

Personalised recommendations