Skip to main content
Log in

Computer-Aided Xenobiotic Toxicity Prediction Taking into Account their Metabolism in the Human Body

  • Published:
Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry Aims and scope Submit manuscript

Abstract

Most xenobiotics undergo metabolic conversions in the human body. The biological activity, toxicity, and other properties of such metabolites may significantly differ from those of the parent compounds. Not only xenobiotics and their final metabolites produced in large quantities, but the intermediates and final metabolites formed in trace amounts, can cause undesirable effects. We have developed a freely available web application MetaTox (http://www.way2drug.com/mg/) for integral assessment of xenobiotics toxicity taking into account their metabolism in humans. The generation of the metabolite structures is based on the reaction fragments. The probability estimation of the certain reaction and the probability estimation of the atoms, which are changed during biotransformation, are used for generation of the xenobiotic metabolism pathways. The MetaTox web application assesses metabolism of compounds in humans and evaluates their acute toxicity, specific (cardiotoxicity, hepatotoxicity, nephrotoxicity), and chronic toxicity (carcinogenicity, teratogenicity, mutagenicity, effects on the reproductive system).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Testa, B. and Jenner, P., in Drug Metabolism: Chemical And Biochemical Aspects, Oelschläger, H., Ed., New York: Marcel Dekker Inc., 1976.

    Google Scholar 

  2. Benedetti, M.S., Whomsley, R., Poggesi, I., Cawello, W., Mathy, F.X., Delporte, M.L., Papeleu, P., and Watelet, J.B., Drug Metab. Rev., 2009, vol. 41, no. 3, pp. 344–390. https://doi.org/10.1080/10837450902891295

    Article  CAS  PubMed  Google Scholar 

  3. Liu, W., Shi, J., Zhu, L., Dong, L., Luo, F., Zhao, M., Wang, Y., Hu, M., Lu, L., and Liu, Z., Drug Des. Devel. Ther., 2015, vol. 9, pp. 5771–5783. https://doi.org/10.2147/DDDT.S92276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li, X., Kamenecka, T.M., and Cameron, M.D., Drug Metab. Dispos., 2010, vol. 38, no. 7, pp. 1238–1245. https://doi.org/10.1124/dmd.109.030361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. van Eij, S., Zh, Z., Cupit, J., Gierula, M., Götz, C., Fritsche, E., and Edwards, R.J., PLoS One, 2012, vol. 7, no. 7, e41721. https://doi.org/10.1371/journal.pone.0041721

    Article  CAS  Google Scholar 

  6. FDA, Safety Testing of Drug Metabolites Guidance for Industry (2016) URL: https://www.fda.gov/downloads/Drugs/…/Guidances/ucm079266.pdf.

  7. Bezhentsev, V.M., Tarasova, O.A., Dmitriev, A.V., Rudik, A.V., Lagunin, A.A., Filimonov, D.A., and Poroikov, V.V., Russ. Chem. Rev., 2016, vol. 85, no. 8, pp. 854–879. https://doi.org/10.1070/RCR4614

    Article  CAS  Google Scholar 

  8. Kirchmair, J., Williamson, M.J., Tyzack, J.D., Tan, L., Bond, P.J., Bender, A., and Glen, R.C., J. Chem. Inf. Model., 2012, vol. 52, no. 3, pp. 617–648. https://doi.org/10.1021/ci200542m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Singh, S.B., Shen, L.Q., Walker, M.J., and Sheridan, R.P., J. Med. Chem., 2003, vol. 46, no. 8, pp. 1330–1336.

    Article  CAS  PubMed  Google Scholar 

  10. Kirchmair, J., Göller, A.H., Lang, D., Kunze, J., Testa, B., Wilson, I.D., Glen, R.C., and Schneider, G., Nat. Rev. Drug Discov., 2015, vol. 14, no. 6, pp. 387–404. https://doi.org/10.1038/nrd4581

    Article  CAS  PubMed  Google Scholar 

  11. Wang, B., Yang, L.-P., Zhang, X.-Z., Huang, S.-Q., Bartlam, M., and Zhou, S.-F., Drug Metab. Rev., 2009, vol. 41, no. 4, pp. 573–643. https://doi.org/10.1080/03602530903118729

    Article  CAS  PubMed  Google Scholar 

  12. Sliwoski, G., Kothiwale, S., Meiler, J., and Lowe, E.W., Pharmacol. Rev., 2014, vol. 66, no. 1, pp. 334–395. https://doi.org/10.1124/pr.112.007336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ivanov, S.M., Lagunin, A.A., and Poroikov, V.V., Drug Discov. Today, 2016, vol. 21, no. 1, pp. 58–71. https://doi.org/10.1016/j.drudis.2015.07.018

    Article  CAS  PubMed  Google Scholar 

  14. Rudik, A.V., Bezhentsev, V.M., Dmitriev, A.V., Druzhilovskiy, D.S., Lagunin, A.A., Filimonov, D.A., and Poroikov, V.V., J. Chem. Inf. Model., 2017, vol. 57, no. 4, pp. 638–642. https://doi.org/10.1021/acs.jcim.6b00662

    Article  CAS  PubMed  Google Scholar 

  15. Rudik, A.V., Dmitriev, A.V., Bezhentsev, V.M., Lagunin, A.A., Filimonov, D.A., and Poroikov, V.V., SAR QSAR Environ. Res., 2017, vol. 28, no. 10, pp. 833–842. https://doi.org/10.1080/1062936X.2017.1399165

    Article  CAS  PubMed  Google Scholar 

  16. Rudik, A., Dmitriev, A., Lagunin, A., Filimonov, D., and Poroikov, V., Bioinformatics, 2015, vol. 31, no. 12, pp. 2046–2048. https://doi.org/10.1093/bioinformatics/btv087

    Article  CAS  PubMed  Google Scholar 

  17. Ivanov, S.M., Lagunin, A.A., Rudik, A.V., Filimonov, D.A., and Poroikov, V.V., J. Chem. Inf. Model., 2018, vol. 58, no. 1. https://doi.org/10.1021/acs.jcim.7b00568

  18. Kuhn, M., Letunic, I., Jensen, L.J., and Bork, P., Nucleic Acids Res., 2016, vol. 44, no. D1, pp. D1075–D1079. https://doi.org/10.1093/nar/gkv1075

    Article  CAS  PubMed  Google Scholar 

  19. Chen, M., Bisgin, H., Tong, L., Hong, H., Fang, H., Borlak, J., and Tong, W., Biomarkers Med., 2014, vol. 8, no. 2, pp. 201–213. https://doi.org/10.2217/bmm.13.146

    Article  CAS  Google Scholar 

  20. Fourches, D., Muratov, E., and Tropsha, A., Nat. Chem. Biol., 2015, vol. 11, no. 8, p. 535. https://doi.org/10.1038/nchembio.1881

    Article  CAS  PubMed  Google Scholar 

  21. URL: ftp://ftp.epa.gov/dsstoxftp/DSSTox_Archive_ 20150930/CPDBAS_DownloadFiles/.

  22. Lagunin, A., Rudik, A., Druzhilovsky, D., Filimonov, D., and Poroikov, V., Bioinformatics, 2018, vol. 34, no. 4, pp. 710–712. https://doi.org/10.1093/bioinformatics/btx678

    Article  CAS  PubMed  Google Scholar 

  23. Berezovskaya, I.V., Pharm. Chem. J., 2003, vol. 37, no. 3, pp. 139–141.

    Article  CAS  Google Scholar 

  24. Boelsterli, U.A., Toxicol. Appl. Pharmacol., 2003, vol. 192, no. 3, pp. 307–322.

    Article  CAS  PubMed  Google Scholar 

  25. Kalgutkar, A.S., Dalvi, D., Obach, R.S., and Smith, D.A., in Reactive Drug Metabolites, Mannhold, R., Kubinyi, H., and Folkers, G., Eds., Willey-VCH, 2012.

    Book  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 14-15-00449).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Rudik.

Ethics declarations

This article does not contain any research involving humans or using animals as objects.

Additional information

Translated by A. Medvedev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudik, A.V., Dmitriev, A.V., Lagunin, A.A. et al. Computer-Aided Xenobiotic Toxicity Prediction Taking into Account their Metabolism in the Human Body. Biochem. Moscow Suppl. Ser. B 13, 228–236 (2019). https://doi.org/10.1134/S1990750819030065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990750819030065

Keywords:

Navigation