Advertisement

Molecularly imprinted polymers (MIP) in electroanalysis of proteins

  • V. V. Shumyantseva
  • T. V. Bulko
  • I. H. Baychorov
  • A. I. Archakov
Article

Abstract

The review summarizes current knowledge on the main approaches used for creation of high affinity polymer analogs of antibodies (known as molecularly imprinted polymers, MIP) applicable for electroanalysis of functionally important proteins such as myoglobin, troponin T, albumin, ferritin, lysozyme, calmodulin. The main types of monomers for MIP preparation as well as methods convenient for analysis of MIP/protein interactions, such as surface plasmon resonance (SPR), nanogravimetry with the use of a quartz crystal resonator (QCM), spectral and electrochemical methods have been considered. Special attention is paid to experimental data on electrochemical registration of myoglobin by means of o-phenylenediaminebased MIP electrodes. It was shown that the imprinting factor calculated as a ratio of the myoglobin signal obtained after myoglobin insertion in MIP to the myoglobin signal obtained after myoglobin insertion in the polymer lacking the molecular template (NIP) is 2–4.

Keywords

molecular imprinting molecularly imprinted polymers (MIP) nanomaterials electroanalysis electrochemical sensors MIP sensor proteins 

Abbreviations used

CV

cyclic voltammetry

DPV

differential pulse voltammetry

EIS

electrochemical impedance spectroscopy

QCM

quartz crystal microbalance

SPR

surface plasmon resonance

SWV

square wave voltammetry

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Archakov, A., Ivanov, Yu., Lisitsa, A., and Zgoda, V., Proteomics, 2009, vol. 9, pp. 1326–1343.CrossRefGoogle Scholar
  2. 2.
    Deev, S.M. and Lebedenko, E.N., Acta Naturae, 2009, vol. 1, pp. 32–50.Google Scholar
  3. 3.
    Barié, N. and Rapp, M., Biosens. Bioelectron., 2001, vol. 16, pp. 979–987.CrossRefGoogle Scholar
  4. 4.
    Petrovskaya, L.E., Shingarova, D.A., Dolgikh, M.P., and Kirpichnikov, M.P., Bioorgan. Khim., 2011, vol. 37, pp. 581–591.Google Scholar
  5. 5.
    Radom, F., Jurek, P.M., Mazurek, M.P., Otlewski, J., and Jeleń, F., Biotechnol. Advances, 2013, vol. 31, pp. 1260–1274.CrossRefGoogle Scholar
  6. 6.
    Radko, S., Rakhmetova, S., Bodoev, N., and Archakov, A., Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 2007, vol. 1, pp. 198–209.CrossRefGoogle Scholar
  7. 7.
    Spiridonova, V.A., Biomed. Khim., 2010, vol. 56, pp. 639–656.CrossRefGoogle Scholar
  8. 8.
    Shcherbinin, D.S. and Veselovsky, A.V., Biofizika, 2013, vol. 58, pp. 415–424.Google Scholar
  9. 9.
    Gendrikson, O.D., Zherdev, A.V., and Dzantiev, B.B., Usp. Biol. Khim., 2006, vol. 46, pp. 149–192.Google Scholar
  10. 10.
    Li, S., Cao, S., Whicombe, M., and Piletsky, S., Progress in Polymer Science, 2014, vol. 39, pp. 145–163.CrossRefGoogle Scholar
  11. 11.
    Polyakov, M.V., Zhur. Fiz. Khim., 1931, vol. 2, pp. 799–805.Google Scholar
  12. 12.
    Polyakov, M.V., Kuleshina, L., and Neimark, I., Zhur. Fiz. Khim., 1937, vol. 10, pp. 100–112.Google Scholar
  13. 13.
    Dickey, F.H., Proc. Natl. Acad. Sci. USA, 1949, vol. 35, pp. 227–229.CrossRefGoogle Scholar
  14. 14.
    Pauling, L., J. Am. Chem. Soc., 1940, vol. 62, pp. 2643–2657.CrossRefGoogle Scholar
  15. 15.
    Wulff, G. and Sarhan, A., Angew. Chem. Int. Ed., 1972, vol. 11, pp. 341–348.Google Scholar
  16. 16.
    Yaqub, S., Latif, U., and Dickert, F.L., Sensors and Actuators B, 2011, vol. 160, pp. 227–233.CrossRefGoogle Scholar
  17. 17.
    Verheyen, E., Schillemans, J.P., van Wijk, M., Demeniex, M.A., Hennink, W.E., and van Nostrum, C.F., Biomaterials, 2011, vol. 32, pp. 3008–3020.CrossRefGoogle Scholar
  18. 18.
    Lieberzeit, P.A., Glanznig, G., Jenik, M., Gazda-Miarecka, S., Dickert, F.L., and Leidl, A. Sensors, 2005, vol. 5, pp. 509–518.CrossRefGoogle Scholar
  19. 19.
    Kima, J.-M., Leea, U.-H., Changa, S.-M., and Park, J.Y., Sensors and Actuators B, 2014, vol. 200, pp. 25–30.CrossRefGoogle Scholar
  20. 20.
    Liu, R., Sha, M., Jiang, S., Luo, J., and Liu, X., Talanta, 2014, vol. 120, pp. 76–83.CrossRefGoogle Scholar
  21. 21.
    Yola, M.L., Uzun, L., Özaltιn, N., and Denizli, A., Talanta, 2014, vol. 120, pp. 318–324.CrossRefGoogle Scholar
  22. 22.
    Cai, D., Ren, L., Zhao, H., Xu, C., Zhang, L., Yu, Y., Wang, H., Lan, Y., Roberts, M.F., Chuang, J.H., Naughton, M.J., Ren, Z., and Chiles, T.C., Nat. Nanotechnol., 2010, vol. 5, pp. 597–601.CrossRefGoogle Scholar
  23. 23.
    Lv, Y., Biotechnol. Advances, 2013, vol. 31, pp. 1172–1186.CrossRefGoogle Scholar
  24. 24.
    Moreira, F.T., Dutra, R.A., Noronha, J.P., and Sales, M.G., Biosens. Bioelectron., 2011, vol. 26, pp. 4760–4766.CrossRefGoogle Scholar
  25. 25.
    Li, W.K. and Li, S.J., Adv. Polym. Sci., 2007, vol. 206, pp. 191–210.CrossRefGoogle Scholar
  26. 26.
    Kim, J.-M., Lee, U.-H., Chang, S.-M., and Park, J.Y., Sensors and Actuators B, 2014, vol. 200, pp. 25–30.CrossRefGoogle Scholar
  27. 27.
    Malitesta, C., Mazzotta, E., Picca, R.A., Poma, A., Chianella, I., and Piletsky, S.A., Anal. Bioanal. Chem., 2012, vol. 402, pp. 1827–1846.CrossRefGoogle Scholar
  28. 28.
    Zhang, X., Peng, Y., Bai, J., Ning, B., Sun, S., Hong, X., Liu, Y., Liu, Y., and Gaom Z., Sensors and Actuators B, 2014, vol. 200, pp. 69–75.CrossRefGoogle Scholar
  29. 29.
    Tuyen, D., Quan, D., Binh, N., Nguyen, V., Lam, T., Huyen, L., Nguen, L., Viet, P., Loc, N., and Huy, T., J. Mol. Liquids, 2014, vol. 198, pp. 307–312.CrossRefGoogle Scholar
  30. 30.
    Luo, J., Jiang, S., and Liu, X., Sensors and Actuators B, 2014, vol. 203, pp. 782–789.CrossRefGoogle Scholar
  31. 31.
    Choong, C.L., Bendall, J.S., and Milne, W.I., Biosens. Bioelectron., 2009, vol. 25, pp. 652–656.CrossRefGoogle Scholar
  32. 32.
    Liu, Y. and Kumar, S., ACS Appl. Mater. Interfaces, 2014, vol. 6, pp. 6069–6087.CrossRefGoogle Scholar
  33. 33.
    Matsunaga, T., Hishiya, T., and Takeuchi, T., Anal. Chim. Acta, 2007, vol. 591, pp. 63–67.CrossRefGoogle Scholar
  34. 34.
    Kimhi, O. and Bianco-Peled, H., Langmuir, 2007, vol. 23, pp. 6329–6335.CrossRefGoogle Scholar
  35. 35.
    Hawkins, D.M., Stevenson, D., and Reddy, S.M., Anal. Chim. Acta, 2005, vol. 542, pp. 61–65.CrossRefGoogle Scholar
  36. 36.
    Wang, Y. and Wei, T.-X., Chem. Lett., 2013, vol. 24, pp. 813–816.Google Scholar
  37. 37.
    Qureshi, A., Gurbuz, Y., and Niazi, J.H., Sensors and Actuators B-Chemical, 2012, vol. 171, pp. 62–76.CrossRefGoogle Scholar
  38. 38.
    Mohammed, M. and Desmulliez, M., Lab on a Chip, 2011, vol. 11, pp. 569–595.CrossRefGoogle Scholar
  39. 39.
    McDonnell, B., Hearty, S., Leonard, P., and O’Kennedy, R., Clin. Biochem., 2009, vol. 42, pp. 549–561.CrossRefGoogle Scholar
  40. 40.
    Karimian, N., Vagin, M., Hossein, M., Zavar, A., Chamsaz, M., Turner, A., and Tiwari, A., Biosens. Bioelectron., 2013, vol. 50, pp. 492–498.CrossRefGoogle Scholar
  41. 41.
    Karimian, N., Turner, A., and Tiwari, A., Biosens. Bioelectron., 2014, vol. 59, pp. 160–165.CrossRefGoogle Scholar
  42. 42.
    Moreira, F., Sharma, S., Dutra, R., Noronha, J., Cass, A., and Sales, M., Biosens. Bioelectron., 2013, vol. 45, pp. 237–244.CrossRefGoogle Scholar
  43. 43.
    Moreira, F., Sharma, S., Dutra, R., Noronha, J., Cass, A., and Sales, M., Sensors and Actuators B, 2014, vol. 196, pp. 123–132.CrossRefGoogle Scholar
  44. 44.
    Bueno, L., El-Sharif, H.F., Salles, M.O., Boehm, R.D., Narayan, R.J., Paixão, T.R.L.C., and Reddy, S.M., Sensors and Actuators B, 2014, vol. 204, pp. 88–95.CrossRefGoogle Scholar
  45. 45.
    Shumyantseva, V.V., Bulko, T.V., Suprun, E.V., Kuzikov, A.V., Agafonova, L.E. and Archakov, A.I., Biomed. Khim., 2015, vol. 61, pp. 185–204.Google Scholar
  46. 46.
    Sharma, P., Iskierko, Z., Pietrzyk-Le, A., D’Souza, F., and Kutner, W., Electrochemistry Communications, 2015, vol. 50, pp. 81–87.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • V. V. Shumyantseva
    • 1
    • 2
  • T. V. Bulko
    • 1
    • 2
  • I. H. Baychorov
    • 3
  • A. I. Archakov
    • 2
  1. 1.IBMC-EcoBioPharmMoscowRussia
  2. 2.Institute of Biomedical ChemistryMoscowRussia
  3. 3.Polyclinics no. 4, State Enterprise no 2MoscowRussia

Personalised recommendations